C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis

[1]  J. O’Shea,et al.  Faculty Opinions recommendation of Immunogenetics. Chromatin state dynamics during blood formation. , 2014 .

[2]  N. Friedman,et al.  Chromatin state dynamics during blood formation , 2014, Science.

[3]  Denis Thieffry,et al.  C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells , 2013, Nature.

[4]  Marie S. Hasemann,et al.  C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors , 2014, PLoS genetics.

[5]  D. Tenen,et al.  Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. , 2013, Cancer cell.

[6]  Howard Y. Chang,et al.  Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons , 2013, Cell.

[7]  K. Hochedlinger,et al.  Chromatin dynamics during cellular reprogramming , 2013, Nature.

[8]  S. Nutt,et al.  M-CSF instructs myeloid lineage fate in single haematopoietic stem cells , 2013, Nature.

[9]  J. Martinez-Climent,et al.  C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. , 2013, Cell reports.

[10]  Oliver Brüstle,et al.  Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies , 2013, Nature Reviews Molecular Cell Biology.

[11]  Greg Donahue,et al.  Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome , 2012, Cell.

[12]  T. Perlmann,et al.  Maintaining differentiated cellular identity , 2012, Nature Reviews Genetics.

[13]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[14]  T. Graf,et al.  C/EBPα bypasses cell cycle-dependency during immune cell transdifferentiation , 2012, Cell cycle.

[15]  Gangning Liang,et al.  Polycomb-Repressed Genes Have Permissive Enhancers that Initiate Reprogramming , 2011, Cell.

[16]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[17]  Thomas Vierbuchen,et al.  Direct Lineage Conversions: Unnatural but useful? , 2011, Nature Biotechnology.

[18]  S. Mandrup,et al.  Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis , 2011, The EMBO journal.

[19]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[20]  E. Davidson Emerging properties of animal gene regulatory networks , 2010, Nature.

[21]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[22]  J. Haanstra,et al.  Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors. , 2010, Blood.

[23]  O. Hobert,et al.  Lineage programming: navigating through transient regulatory states via binary decisions. , 2010, Current opinion in genetics & development.

[24]  H. Blau,et al.  Nuclear reprogramming to a pluripotent state by three approaches , 2010, Nature.

[25]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[26]  Rudolf Grosschedl,et al.  Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. , 2010, Immunity.

[27]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[28]  Esteban Ballestar,et al.  A robust and highly efficient immune cell reprogramming system. , 2009, Cell stem cell.

[29]  P. Kastner,et al.  MafB Restricts M-CSF-Dependent Myeloid Commitment Divisions of Hematopoietic Stem Cells , 2009, Cell.

[30]  V. Kouskoff,et al.  Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. , 2009, Blood.

[31]  Antoine M. van Oijen,et al.  Real-time single-molecule observation of rolling-circle DNA replication , 2009, Nucleic acids research.

[32]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[33]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[34]  Y. Kluger,et al.  A role for mammalian Sin3 in permanent gene silencing. , 2008, Molecular cell.

[35]  T. Graf,et al.  PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells , 2008, Proceedings of the National Academy of Sciences.

[36]  Elaine Dzierzak,et al.  Of lineage and legacy: the development of mammalian hematopoietic stem cells , 2008, Nature Immunology.

[37]  D. Tenen,et al.  C/EBPalpha binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. , 2007, Blood.

[38]  A. Friedman Transcriptional control of granulocyte and monocyte development , 2007, Oncogene.

[39]  Mark Ptashne,et al.  On the use of the word ‘epigenetic’ , 2007, Current Biology.

[40]  K. Akashi,et al.  C/EBPbeta is required for 'emergency' granulopoiesis. , 2006, Nature immunology.

[41]  P. Kastner,et al.  Visualizing PU.1 activity during hematopoiesis. , 2005, Experimental hematology.

[42]  Donald Metcalf,et al.  Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors , 2005, The Journal of experimental medicine.

[43]  Pu Zhang,et al.  Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. , 2004, Immunity.

[44]  T. Graf,et al.  Stepwise Reprogramming of B Cells into Macrophages , 2004, Cell.

[45]  K. Akashi,et al.  Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. , 2003, Immunity.

[46]  D. Tenen,et al.  Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. , 2002, Blood.

[47]  H. Singh,et al.  Regulation of B lymphocyte and macrophage development by graded expression of PU.1. , 2000, Science.

[48]  R. Pictet,et al.  Genomic footprinting using nucleases. , 1999, Methods in molecular biology.

[49]  V. Poli,et al.  Impaired generation of bone marrow B lymphocytes in mice deficient in C/EBPbeta. , 1997, Blood.

[50]  M. Greaves,et al.  Multilineage gene expression precedes commitment in the hemopoietic system. , 1997, Genes & development.

[51]  Nobuaki Yoshida,et al.  Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages , 1995, Cell.

[52]  E. Scott,et al.  Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. , 1994, Science.