Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states

Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.AMS Subject Classification:35K60, 82C31, 92B20.

[1]  Khashayar Pakdaman,et al.  Dynamics of a structured neuron population , 2009 .

[2]  Lawrence Sirovich,et al.  On the Simulation of Large Populations of Neurons , 2004, Journal of Computational Neuroscience.

[3]  B. Perthame,et al.  General relative entropy inequality: an illustration on growth models , 2005 .

[4]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[5]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[6]  Jonathan Touboul,et al.  Importance of the Cutoff Value in the Quadratic Adaptive Integrate-and-Fire Model , 2008, Neural Computation.

[7]  Louis Tao,et al.  A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics , 2011, J. Comput. Phys..

[8]  Lawrence Sirovich,et al.  Dynamics of neural populations: Stability and synchrony , 2006, Network.

[9]  Aaditya V. Rangan,et al.  DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS " , 2010 .

[10]  Larissa Albantakis,et al.  The encoding of alternatives in multiple-choice decision-making , 2009, Proceedings of the National Academy of Sciences.

[11]  V. Dos Santos,et al.  A Conservative and Entropy Scheme for a Simplified Model of Granular Media , 2004 .

[12]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[13]  M. Ledoux The concentration of measure phenomenon , 2001 .

[14]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[15]  David Cai,et al.  Cascade-induced synchrony in stochastically driven neuronal networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[17]  Jonathan Touboul,et al.  Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons , 2008, SIAM J. Appl. Math..

[18]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[19]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Xiao-Jing Wang,et al.  Mean-Field Theory of Irregularly Spiking Neuronal Populations and Working Memory in Recurrent Cortical Networks , 2003 .

[21]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[22]  Maria Pia Gualdani,et al.  Asymptotics for a Symmetric Equation in Price Formation , 2009 .

[23]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[24]  Khashayar Pakdaman,et al.  Activity in sparsely connected excitatory neural networks: effect of connectivity , 1998, Neural Networks.

[25]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[26]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[27]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[28]  J. Rinzel,et al.  Noise-induced alternations in an attractor network model of perceptual bistability. , 2007, Journal of neurophysiology.

[29]  Modified logarithmic Sobolev inequalities on R , 2006, math/0612026.

[30]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[31]  M. Mattia,et al.  Population dynamics of interacting spiking neurons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  H. Tuckwell Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure , 1988 .