Numerical solution of Q2 evolution equations for fragmentation functions

Semi-inclusive hadron-production processes are becoming important in high-energy hadron reactions. They are used for investigating properties of quark- hadron matters in heavy-ion collisions, for finding the origin of nucleon spin in polarized lepton-nu cleon and nucleon-nucleon reactions, and possibly for finding exotic hadrons. In describing the ha dron-production cross sections in high-energy reactions, fragmentation functions are essen tial quantities. A fragmentation function indicates the probability of producing a hadron from a parto n in the leading order of the running coupling constantαs. Its Q 2 dependence is described by the standard DGLAP (DokshitzerGribov-Lipatov-Altarelli-Parisi) evolution equations, which are often used in theoretical and experimental analyses of the fragmentation functions and in calculating semi-inclusive cross sections. The DGLAP equations are complicated integro-differential equations, which cannot be solved in an analytical method. In this work, a simple method is employed for solving the evolution equations by using Gauss-Legendre quadrature for evaluating integrals, and a useful code is provided for calculating the Q 2 evolution of the fragmentation functions in the leading ord er (LO) and next-to-leading order (NLO) ofαs. The renormalization scheme is MS in the NLO evolution. Our evolution code is explained for using it in on e’s studies on the fragmentation functions.

[1]  R. Petronzio,et al.  Lepton-hadron processes beyond leading order in quantum chromodynamics , 1982 .

[2]  W. Vogelsang,et al.  Next-to-leading order evolution of polarized and unpolarized fragmentation functions , 1996, hep-ph/9612250.

[3]  Wojtek Furmanski,et al.  A method of analyzing the scaling violation of inclusive spectra in hard processes , 1982 .

[4]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  I. Schienbein,et al.  PDF Nuclear Corrections for Charged Lepton and Neutrino Deep Inelastic Scattering Processes , 2009, 0907.2357.

[7]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[8]  G. Altarelli,et al.  Processes Involving Fragmentation Functions Beyond the Leading Order in QCD , 1979 .

[9]  I. Cloet,et al.  NJL-jet model for quark fragmentation functions , 2009, 0906.5362.

[10]  D. Florian,et al.  Global analysis of fragmentation functions for protons and charged hadrons , 2007, 0707.1506.

[11]  Marco Stratmann,et al.  Extraction of spin-dependent parton densities and their uncertainties , 2009, 0904.3821.

[12]  W. Vogelsang,et al.  Towards a global analysis of polarized parton distributions , 2001, hep-ph/0107064.

[13]  K. Eskola,et al.  EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions , 2009, 0902.4154.

[14]  B. Kniehl,et al.  Charmed-Meson Fragmentation Functions with Finite-Mass Corrections , 2007, 0712.0481.

[15]  D. Florian,et al.  Nuclear parton distributions at next to leading order , 2003, hep-ph/0311227.

[16]  F. Arleo (Medium-modified) fragmentation functions , 2008, 0810.1193.

[17]  Fragmentation functions from flavor inclusive and flavor tagged e+ e- annihilations , 2000, hep-ph/0003177.

[18]  A. Sidorov,et al.  A Possible Resolution of the Strange Quark Polarization Puzzle , 2011, 1103.5979.

[19]  A. Mitov,et al.  QCD corrections to semi-inclusive hadron production in electron–positron annihilation at two loops , 2006, hep-ph/0604160.

[20]  P. Nason,et al.  SCALING VIOLATION IN E+E- FRAGMENTATION FUNCTIONS: QCD EVOLUTION, HADRONIZATION AND HEAVY QUARK MASS EFFECTS NUCL. PHYS. B 421 (1994) 473 , 1996 .

[21]  P. Jimenez-Delgado,et al.  Dynamical parton distributions of the nucleon and very small-x physics , 2007, 0709.0614.

[22]  G. Ingelman,et al.  Testing QCD scaling violations in the HERA energy range , 1990 .

[23]  W. Marsden I and J , 2012 .

[24]  A. Pronko,et al.  Parton fragmentation in the vacuum and in the medium , 2008, 0804.2021.

[25]  B. Kniehl,et al.  AKK update: Improvements from new theoretical input and experimental data , 2008, 0803.2768.

[26]  H. Matevosyan,et al.  Calculating kaon fragmentation functions from the Nambu-Jona-Lasinio jet model , 2010, 1011.1052.

[27]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.

[28]  E. Leader,et al.  Towards a model independent approach to fragmentation functions , 2008, 0809.0191.

[29]  Juan Rojo,et al.  A Higher Order Perturbative Parton Evolution Toolkit (HOPPET) , 2008, Comput. Phys. Commun..

[30]  S. Kumano,et al.  Numerical solution of Q^2 evolution equation for the transversity distribution Delta_T q , 1997, hep-ph/9712410.

[31]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[32]  A. Gourdin,et al.  Applied Numerical Methods , 2004 .

[33]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[34]  I. Schienbein,et al.  Nuclear parton distribution functions from neutrino deep inelastic scattering , 2008 .

[35]  Johannes Blümlein,et al.  3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders , 2010 .

[36]  M. Block,et al.  Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD , 2010, 1005.2556.

[37]  S. Kumano,et al.  A FORTRAN program for numerical solution of the Altarelli-Parisi equations by the Laguerre method , 1992 .

[38]  S. Kumano,et al.  FORTRAN program for a numerical solution of the nonsinglet Altarelli-Parisi equation , 1994, hep-ph/9409289.

[39]  Johannes Blümlein,et al.  Analytic Continuation of Mellin Transforms up to two-loop Order , 2000 .

[40]  S. Kumano,et al.  Comparison of numerical solutions for Q 2 evolution equations , 2004, hep-ph/0405160.

[41]  A. Mitov,et al.  Next-to-next-to-leading order evolution of non-singlet fragmentation functions , 2006, hep-ph/0604053.

[42]  S. Kumano,et al.  Determination of gluon polarization from deep inelastic scattering and collider data , 2008, 0808.0413.

[43]  J. Blümlein,et al.  QCD Analysis of Polarized Deep Inelastic Scattering Data , 2010 .

[44]  Fragmentation functions for light charged hadrons with complete quark flavour separation , 2005, hep-ph/0502188.

[45]  S. Kumano,et al.  Numerical solution of Q 2 evolution equations for polarized structure functions , 1997, hep-ph/9707220.

[46]  D. Florian,et al.  Global analysis of fragmentation functions for pions and kaons and their uncertainties , 2007, hep-ph/0703242.

[47]  A. Vogt,et al.  Radiatively generated parton distributions for high energy collisions , 1990 .

[48]  S. Kumano,et al.  Nuclear parton distribution functions and their uncertainties , 2004 .

[49]  P. Nason,et al.  Scaling violation in e+e− fragmentation functions: QCD evolution, hadronization and heavy quark mass effects , 1994 .

[50]  A. Vogt,et al.  The evolution of unpolarized singlet structure functions at small x , 1998 .

[51]  R. Feynman Structure of the proton. , 1974, Science.

[52]  S. Kumano,et al.  Polarized parton distribution functions in the nucleon , 2000, hep-ph/0001046.

[53]  Richard D. Ball,et al.  Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology , 2011, 1101.1300.

[54]  R. Petti,et al.  Neutrino inclusive inelastic scattering off nuclei , 2007, hep-ph/0703033.

[55]  S. Kumano,et al.  Determination of nuclear parton distribution functions and their uncertainties at next-to-leading order , 2005, 0709.3038.

[56]  Numerical solution of $Q^2$ evolution equations in a brute-force method , 1995, hep-ph/9508246.

[57]  V. Guzey,et al.  Color fluctuation approximation for multiple interactions in leading twist theory of nuclear shadowing , 2009, 0908.1149.

[58]  J. Huston,et al.  New parton distributions for collider physics , 2010, 1007.2241.

[59]  Charmed-hadron fragmentation functions from CERN LEP1 revisited , 2006, hep-ph/0607306.

[60]  J. Huston,et al.  Handbook of perturbative QCD , 1995 .

[61]  S. Kumano,et al.  Determination of nuclear parton distributions , 2001, hep-ph/0103208.

[62]  G. Ramsey The Laguerre method for solving integro-differential equations , 1985 .

[63]  A. V. Sidorov,et al.  Determination of polarized parton densities from a QCD analysis of inclusive and semi-inclusive deep inelastic scattering data , 2010, 1010.0574.