Iterating Transducers

We discuss simple functional transductions defined by invertible Mealy automata under iteration and in particular the question when the orbit relation defined by iteration is rational. We identify a class of these automata that has relatively complicated orbits, yet some of them are still orbit rational and discuss a number of decision problems associated with these devices.

[1]  Klaus Sutner,et al.  Model Checking One-Dimensional Cellular Automata , 2009, J. Cell. Autom..

[2]  Saharon Shelah,et al.  The undecidability of the recursively enumerable degrees , 1982 .

[3]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[4]  Ines Klimann,et al.  A Characterization of Those Automata That Structurally Generate Finite Groups , 2013, LATIN.

[5]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[6]  Klaus Sutner,et al.  Iterating Invertible Binary Transducers , 2012, DCFS.

[7]  Klaus Sutner,et al.  Cellular Automata and Intermediate Reachability Problems , 2002, Fundam. Informaticae.

[8]  Michel Latteux,et al.  Iterated Length-Preserving Rational Transductions , 1998, MFCS.

[9]  Miles Davis,et al.  A Note on Universal Turing Machines , 1970 .

[10]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[11]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[12]  S. Sidki,et al.  Groups: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms , 2004 .

[13]  Klaus Sutner,et al.  Iteration of Invertible Transductions , 2014, Int. J. Found. Comput. Sci..

[14]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[15]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[16]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[17]  Dana S. Scott Some Definitional Suggestions for Automata Theory , 1967, J. Comput. Syst. Sci..

[18]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[19]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[20]  Sasha Rubin,et al.  Automatic Structures: Overview and Future Directions , 2003, J. Autom. Lang. Comb..

[21]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[22]  Klaus Sutner,et al.  Computational classification of cellular automata , 2012, Int. J. Gen. Syst..

[23]  Turlough Neary,et al.  P-completeness of Cellular Automaton Rule 110 , 2006, ICALP.

[24]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[25]  Klaus Sutner Classifying circular cellular automata , 1991 .

[26]  George N. Raney,et al.  Sequential Functions , 1958, JACM.

[27]  Pierre Gillibert,et al.  The Finiteness Problem for Automaton Semigroups is Undecidable , 2013, Int. J. Algebra Comput..

[28]  Jean Vuillemin,et al.  On Circuits and Numbers , 1994, IEEE Trans. Computers.

[29]  Said Sidki,et al.  Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity , 2000 .

[30]  Martin Davis,et al.  The definition of universal Turing machine , 1957 .

[31]  Klaus Sutner,et al.  The complexity of reversible cellular automata , 2004, Theor. Comput. Sci..

[32]  Klaus Sutner,et al.  A Note on Culik-Yu Classes , 1989, Complex Syst..