Aging effects in FPGAs: an experimental analysis

Modern Field Programmable Gate Arrays (FPGAs) are built using the most advanced technology nodes to meet performance and power demands. This makes them susceptible to various reliability challenges at nano-scale, and in particular to transistor aging. In this paper, an experimental analysis is made to identify the main parameters and phenomena influencing the performance degradation of FPGAs. For that purpose, a set of controlled ring-oscillator-based sensors with different frequencies and tunable activity control are implemented on a Spartan-6 FPGA. Thus, the internal switching activities (SAs) and signal probabilities (SPs) of the sensors can be varied. We performed accelerated-lifetime conditions using elevated temperatures and voltages in a controlled setting to stress the FPGA. A novel monitoring method based on measuring the electromagnetic emissions of the FPGA is used to accurately monitor the performance of the sensors before and after the stress. The experiments reveal the extent of performance degradations, the impact of SPs and SAs, and the relative impacts of BTI and HCI aging factors.

[1]  Pascal Benoit,et al.  A New Process Characterization Method for FPGAs Based on Electromagnetic Analysis , 2011, 2011 21st International Conference on Field Programmable Logic and Applications.

[2]  Patrick Schaumont,et al.  The Impact of Aging on an FPGA-Based Physical Unclonable Function , 2011, 2011 21st International Conference on Field Programmable Logic and Applications.

[3]  V. Huard,et al.  Hot-Carrier acceleration factors for low power management in DC-AC stressed 40nm NMOS node at high temperature , 2009, 2009 IEEE International Reliability Physics Symposium.

[4]  Yu Cao,et al.  The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation, and Analysis , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  Peter Y. K. Cheung,et al.  Degradation in FPGAs: measurement and modelling , 2010, FPGA '10.

[6]  Peter Y. K. Cheung,et al.  Degradation Analysis and Mitigation in FPGAs , 2010, 2010 International Conference on Field Programmable Logic and Applications.

[7]  Nick Mehta Xilinx UltraScale Architecture for High-Performance , Smarter Systems , 2009 .