A continuum-based mixed shell element for shakedown analysis
暂无分享,去创建一个
Ricardo Rodrigues Martins | Lavinia Borges | Nestor Zouain | Eduardo Alberto de Souza Neto | E. A. S. Neto | N. Zouain | R. R. Martins | L. Borges
[1] Manolis Papadrakakis,et al. Postbuckling performance of the TRIC natural mode triangular element for Isotropic and laminated composite shells , 1998 .
[2] H. Nguyen-Dang,et al. A primal–dual algorithm for shakedown analysis of structures , 2004 .
[3] Manolis Papadrakakis,et al. Nonlinear dynamic analysis of shells with the triangular element TRIC , 2003 .
[4] E. A. de Souza Neto,et al. A continuum-based mixed axisymmetric shell element for limit and shakedown analysis , 2014 .
[5] Hany F. Abdalla,et al. Shakedown Limit Loads for 90 Degree Scheduled Pipe Bends Subjected to Steady Internal Pressure and Cyclic Bending Moments , 2011 .
[6] Klaus-Jürgen Bathe,et al. A triangular six-node shell element , 2009 .
[7] J. Simon,et al. Numerical lower bound shakedown analysis of engineering structures , 2011 .
[8] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[9] Manfred Staat,et al. Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface , 2008 .
[10] Castrenze Polizzotto. On the Conditions to Prevent Plastic Shakedown of Structures: Part II—The Plastic Shakedown Limit Load , 1993 .
[11] Thomas J. R. Hughes,et al. Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .
[12] J. L. Silveira,et al. Quadratic velocity‐linear stress interpolations in limit analysis , 2014 .
[13] Phill-Seung Lee,et al. Measuring the convergence behavior of shell analysis schemes , 2011 .
[14] Donald Mackenzie,et al. Shakedown and limit analysis of 90° pipe bends under internal pressure, cyclic in-plane bending and cyclic thermal loading , 2011 .
[15] Quoc Son Nguyen,et al. Stability and Nonlinear Solid Mechanics , 2000 .
[16] Leone Corradi,et al. A triangular finite element for sequential limit analysis of shells , 2004 .
[17] G. Maier,et al. 3.12 – Direct Methods of Limit and Shakedown Analysis , 2003 .
[18] Jacov A. Kamenjarzh,et al. Limit Analysis of Solids and Structures , 1996 .
[19] Manolis Papadrakakis,et al. Elasto-plastic analysis of shells with the triangular element TRIC , 2002 .
[20] K. Bathe,et al. Development of MITC isotropic triangular shell finite elements , 2004 .
[21] Jose Luis Silveira,et al. An algorithm for shakedown analysis with nonlinear yield functions , 2002 .
[22] W. Han,et al. Plasticity: Mathematical Theory and Numerical Analysis , 1999 .
[23] W. T. Koiter. General theorems for elastic plastic solids , 1960 .
[24] D. Owen,et al. Computational methods for plasticity : theory and applications , 2008 .
[25] Manfred Staat,et al. Probabilistic limit and shakedown analysis of thin plates and shells , 2009 .
[26] José Herskovits,et al. An iterative algorithm for limit analysis with nonlinear yield functions , 1993 .
[27] Antonio J. Gil,et al. Analysis of a continuum-based beam element in the framework of explicit-FEM , 2009 .
[28] Manfred Staat,et al. Numerical methods for limit and shakedown analysis : deterministic and probabilistic problems , 2003 .
[29] Leone Corradi,et al. Post-collapse analysis of plates and shells based on a rigid-plastic version of the TRIC element , 2003 .
[30] J. Argyris,et al. The TRIC shell element: theoretical and numerical investigation , 2000 .
[31] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[32] Manfred Staat,et al. LISA : a European project for FEM-based limit and shakedown analysis , 2001 .
[33] J. C. Simo,et al. On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .
[34] Manfred Staat,et al. Analysis of pressure equipment by application of the primal-dual theory of shakedown , 2006 .
[35] E. Ramm,et al. Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .
[36] N. Zouain. Shakedown and Safety Assessment , 2004 .
[37] O. C. Zienkiewicz,et al. Analysis of thick and thin shell structures by curved finite elements , 1970 .
[38] A. V. Lyamin,et al. Bounds to Shakedown Loads for a Class of Deviatoric Plasticity Models , 2007 .
[39] J. Z. Zhu,et al. The finite element method , 1977 .
[40] E. Christiansen. Limit analysis of collapse states , 1996 .
[41] K. Bathe. Finite Element Procedures , 1995 .
[42] H. Nguyen-Dang,et al. Direct Finite Element Kinematical Approaches in Limit and Shakedown Analysis of Shells and Elbows , 2000 .
[43] David W. Murray,et al. Nonlinear Finite Element Analysis of Steel Frames , 1983 .