A Modified Tracer Selection and Tracking Procedure to Derive Winds Using Water Vapor Imagers

Abstract The remotely sensed upper-tropospheric water vapor wind information has been of increasing interest for operational meteorology. A new tracer selection based on a local image anomaly and tracking procedure, itself based on Nash–Sutcliffe model efficiency, is demonstrated here for the estimation of upper-tropospheric water vapor winds both for cloudy and cloud-free regions from water vapor images. The pressure height of the selected water vapor tracers is calculated empirically using a height assignment technique based on a genetic algorithm. The new technique shows encouraging results when compared with Meteosat-5 water vapor winds over the Indian Ocean region. The water vapor winds produced by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) from Meteosat-5 and the present algorithm are compared with collocated radiosonde observations according to Coordination Group for Meteorological Satellites guidelines. The proposed algorithm shows better accuracy in ter...