Hydrobionts and Plants as Alternative Hosts for Sapronosis Pathogens

Relevance. Specific epidemiology of sapronotic (soilborne, waterborn) bacteria is characterized from the ecological point of view. The characteristic feature of soil-borne, water-born pathogens is an ability to exist autonomously in the environment. Aims. This analytical review is focused on hydrobionts and crops as alternative hosts for several soilborne and waterborne pathogenic bacteria (Vibrio, Legionella, Yersinia, Listeria monocytogenes). Conclusions. Published experimental results evidence capabilities of human and animal pathogens to colonize protozoan and plant tissues. Novel approaches are discussed to minimize risks of infection spreading.

[1]  The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020 , 2022, EFSA journal. European Food Safety Authority.

[2]  S. Ermolaeva,et al.  Experimental Listeria–Tetrahymena–Amoeba food chain functioning depends on bacterial virulence traits , 2019, BMC Ecology.

[3]  Dagmar Hartge,et al.  Report , 2019, Datenschutz und Datensicherheit - DuD.

[4]  K. Nagy,et al.  The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017 , 2019, EFSA journal. European Food Safety Authority.

[5]  Валентина Ивановна Пушкарева,et al.  ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ РОЛИ РАСТЕНИЙ В ЭПИДЕМИОЛОГИИ САПРОНОЗНЫХ ИНФЕКЦИЙ , 2018 .

[6]  C. Haas,et al.  Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006–2017 , 2018, Current Environmental Health Reports.

[7]  I. Vågsholm,et al.  Food safety challenges and One Health within Europe , 2018, Acta Veterinaria Scandinavica.

[8]  Y. Boucher,et al.  Emergence, ecology and dispersal of the pandemic generating Vibrio cholerae lineage. , 2017, International microbiology : the official journal of the Spanish Society for Microbiology.

[9]  L. Shcherbakova,et al.  Antimicrobial Activity of Wild Plant Seed Extracts against Human Bacterial and Plant Fungal Pathogens , 2017 .

[10]  A. Amphlett Far East Scarlet-Like Fever: A Review of the Epidemiology, Symptomatology, and Role of Superantigenic Toxin: Yersinia pseudotuberculosis-Derived Mitogen A , 2015, Open forum infectious diseases.

[11]  B. Brumback,et al.  Monitoring Water Sources for Environmental Reservoirs of Toxigenic Vibrio cholerae O1, Haiti , 2014, Emerging infectious diseases.

[12]  P. Watnick,et al.  Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation , 2013, Applied and Environmental Microbiology.

[13]  D. McDougald,et al.  The Rise of Pathogens: Predation as a Factor Driving the Evolution of Human Pathogens in the Environment , 2013, Microbial Ecology.

[14]  Валентина Ивановна Пушкарева,et al.  Растения как резервуар и источник возбудителей пищевых инфекций , 2012 .

[15]  J. Barak,et al.  Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. , 2012, Annual review of phytopathology.

[16]  S. Wai,et al.  ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii , 2012, BMC Research Notes.

[17]  P. Hand,et al.  Fresh fruit and vegetables as vehicles for the transmission of human pathogens. , 2010, Environmental microbiology.

[18]  S. Ermolaeva,et al.  Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts , 2010, BMC Microbiology.

[19]  Андрей Александрович Иванов,et al.  Экспериментальное обоснование роли структурирования и других характеристик химуса в определении функциональных возможностей желудочно-кишечного тракта при проведении энтерального питания , 2009 .

[20]  G. Schoolnik,et al.  Biofilm Acts as a Microenvironment for Plankton‐Associated Vibrio cholerae in the Aquatic Environment of Bangladesh , 2007, Microbiology and immunology.

[21]  D. McDougald,et al.  Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Colwell Infectious disease and environment: cholera as a paradigm for waterborne disease. , 2004, International microbiology : the official journal of the Spanish Society for Microbiology.

[23]  U. Bonas,et al.  Common infection strategies of plant and animal pathogenic bacteria. , 2003, Current opinion in plant biology.

[24]  V. Bulgakov,et al.  [The interaction of Yersinia, Listeria and Salmonella with plant cells]. , 2000, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[25]  R. Colwell,et al.  Ecological relationships between Vibrio cholerae and planktonic crustacean copepods , 1983, Applied and environmental microbiology.