Entanglement by Path Identity.

Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

[1]  Anton Zeilinger,et al.  Partial polarization by quantum distinguishability , 2015, 1510.04192.

[2]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[3]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[4]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[5]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[6]  Miao Huang,et al.  Observation of ten-photon entanglement using thin BiB 3 O 6 crystals , 2016, CLEO 2017.

[7]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Two-photon interference in the presence of absorption , 2004 .

[9]  S. Ramelow,et al.  Direct generation of photon triplets using cascaded photon-pair sources , 2010, Nature.

[10]  L. Mandel,et al.  Induced coherence and indistinguishability in optical interference. , 1991, Physical review letters.

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  Andrew Forbes,et al.  Engineering two-photon high-dimensional states through quantum interference , 2016, Science Advances.

[13]  Jay Lawrence,et al.  Rotational covariance and Greenberger-Horne-Zeilinger theorems for three or more particles of any dimension , 2013, 1308.3808.

[14]  Juha Hassel,et al.  Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity , 2015, Nature Communications.

[15]  A. Zeilinger,et al.  Bose-Einstein condensate of metastable helium for quantum correlation experiments , 2014, 1406.1322.

[16]  M. J. Padgett,et al.  Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement , 2012, 1205.1968.

[17]  L. Mandel,et al.  Induced coherence without induced emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[18]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[19]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[20]  Sergei P. Kulik,et al.  Infrared spectroscopy with visible light , 2016 .

[21]  A. Buchleitner,et al.  Limits to multipartite entanglement generation with bosons and fermions , 2012, 1210.2920.

[22]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[23]  Anton Zeilinger,et al.  Theory of quantum imaging with undetected photons , 2015, 1504.00402.

[24]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[25]  A. Aspect An atomic Hong-Ou-Mandel experiment , 2014 .

[26]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[27]  Herzog,et al.  Complementarity and the quantum eraser. , 1995, Physical review letters.

[28]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[29]  T Bastin,et al.  Generation of symmetric Dicke states of remote qubits with linear optics. , 2007, Physical review letters.

[30]  A. Zeilinger,et al.  Higher-order quantum entanglement , 1992 .

[31]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[32]  Anton Zeilinger,et al.  Quantum imaging with undetected photons , 2014, Nature.

[33]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[34]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[35]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[36]  Harald Weinfurter,et al.  Experimental implementation of higher dimensional time–energy entanglement , 2012 .

[37]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[38]  P. Milonni,et al.  Complementarity in biphoton generation with stimulated or induced coherence , 2015, 1506.00457.

[39]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[40]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[41]  Nicolas Gisin,et al.  Quantifying Photonic High-Dimensional Entanglement. , 2017, Physical review letters.

[42]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[43]  Piotr Migdal,et al.  Multiphoton states related via linear optics , 2014, 1403.3069.

[44]  Herzog,et al.  Frustrated two-photon creation via interference. , 1994, Physical review letters.

[45]  P. Milonni,et al.  Induced coherence, vacuum fields, and complementarity in biphoton generation. , 2014, Physical review letters.

[46]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[47]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.