Elementary movement detectors in an insect visual system

In the theoretical part of the present work the input-output relation for a multi-input system is developed into a functional power series. This is formally equivalent to a decomposition of the system into a sum of all possible combinations of 1-, 2-, 3-... input subsystems. The average response of the system to a uniformly moving patern is known to be a Fourier series with respect to spatial frequency. The coefficients of the series are linear combinations of the “weights” by which different subsystems contribute to the total reaction. If a system can be shown to have essential nonlinearities of no higher than second order it is possible to calculate, from a Fourier analysis of the average movement response, the “weight” by which the nonlinear interaction between any two input elements contributes to the total reaction. This interaction is termed “elementary movement detector”. By the analysis presented here the arrangement of the elementary movement detectors may be determined for a two-dimensional array of input elements and the strength of their contributions to the total movement reaction may be calculated. Special experimental methods have been developed which allow one to apply this analysis to the visual system of the fruitfly Drosophila. The preliminary data presented show that the direction sensitive optomotor response of Drosophila can be attributed predominantly to the contributions from two “elementary movement detectors” which interconnect neighbouring visual elements. The detectors are oriented in the hexagonal array of the compound eye at +30° and at-30° with respect to the horizontal line of symmetry. A weak contribution from a detector between neighbouring elements along the horizontal line of symmetry is suggested by the present data. In the course of the analysis the contrast transfer properties of the compound eye are characterized.

[1]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[2]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[3]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[4]  D. Varjú Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .

[5]  B. Hassenstein Optokinetische Wirksamkeit bewegter periodischer Muster (Nach Messungen am Rüsselkäfer Chlorophanus viridis) , 1959 .

[6]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[7]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[9]  Werner Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II , 1967 .

[10]  Karl Georg Götz,et al.  Movement discrimination in insects , 1969 .

[11]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[12]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[13]  K. Kirschfeld DAS NEURALE SUPERPOSITIONSAUGE , 1973 .

[14]  W. T. Catton Information processing in the visual systems of arthropods , 1974 .

[15]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[16]  T. Poggio Processing of visual information in flies: from a phenomenological problem towards the nervous mechanisms , 1974 .

[17]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[18]  G. D. Mccann,et al.  Nonlinear identification theory models for successive stages of visual nervous systems of flies. , 1974, Journal of neurophysiology.

[19]  T. Poggio Stochastic Linearization, Central Limit Theorem and Linearity in (Nervous) "Black-Boxes" , 1975 .

[20]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[21]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[22]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[23]  T. Poggio,et al.  The Volterra Representation and the Wiener Expansion: Validity and Pitfalls , 1977 .

[24]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[25]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[26]  Martin Heisenberg,et al.  Comparative behavioral studies on two visual mutants ofDrosophila , 1972, Journal of comparative physiology.

[27]  Werner Reichardt,et al.  Musterinduzierte Flugorientierung , 1973, Naturwissenschaften.

[28]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[29]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[30]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[31]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[32]  Lotte Gavel,et al.  Die „kritische Streifenbreite“ als Mass der Sehschärfe bei Drosophila melanogaster , 2004, Zeitschrift für vergleichende Physiologie.

[33]  W. Reichardt,et al.  Tracking of moving objects by the flyMusca domestica , 1974, Naturwissenschaften.

[34]  T. Poggio,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica , 2004, Kybernetik.

[35]  Karl Georg Götz,et al.  The optomotor equilibrium of theDrosophila navigation system , 1975, Journal of comparative physiology.

[36]  Roland Hengstenberg,et al.  Der Einflu\ des Schirmpigmentgehalts auf die Helligkeits- und Kontrastwahrnehmung bei Drosophila-Augenmutanten , 1967, Kybernetik.

[37]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[38]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[39]  M. Heisenberg,et al.  The use of mutations for the partial degradation of vision inDrosophila melanogaster , 1975, Journal of comparative physiology.

[40]  Tomaso Poggio,et al.  The orientation of flies towards visual patterns: On the search for the underlying functional interactions , 1975, Biological Cybernetics.

[41]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für vergleichende Physiologie.

[42]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.

[43]  Karl Georg Götz,et al.  Visual control of locomotion in the walking fruitflyDrosophila , 1973, Journal of comparative physiology.

[44]  Werner Reichardt,et al.  Visually induced height orientation of the fly Musca domestica , 1975, Biological Cybernetics.

[45]  Karl Georg Götz,et al.  Hirnforschung am Navigationssystem der Fliegen , 1975, Naturwissenschaften.

[46]  B. Hassenstein,et al.  Ommatidienraster und afferente Bewegungsintegration , 1951, Zeitschrift für vergleichende Physiologie.

[47]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[48]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[49]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[50]  B. Pick,et al.  Visual pattern discrimination as an element of the fly's orientation behaviour , 1976, Biological Cybernetics.

[51]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[52]  J. Kien,et al.  Neuronal mechanisms subserving directional selectivity in the locust optomotor system , 1975, Journal of comparative physiology.