A concrete damage–plasticity model for FRP confined columns

Proper design of fibre reinforced polymer (FRP) retrofitted concrete columns requires an appropriate concrete model that describes both confinement sensitivity (i.e increase of the strength and ductility) and dilation characteristic of concrete under the triaxial stress state. In this paper, a confinement-sensitive damage plasticity model for concrete material is developed. The dilation behaviour is predicted using a non associated Cam-Clay type potential function. The application of the model is demonstrated in the case of actively and FRP confined (passive) concrete. It is found that essential mechanical features of the confined concrete can be reproduced for both actively and passively confined concrete in practical engineering uses.

[1]  Tao Yu,et al.  Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model , 2010 .

[2]  Kaspar Willam,et al.  Fracture Energy Formulation for Inelastic Behavior of Plain Concrete , 1994 .

[3]  Chandrakant S. Desai,et al.  Constitutive model with strain softening , 1987 .

[4]  S. Pietruszczak,et al.  An elastoplastic constitutive model for concrete , 1988 .

[5]  E. Oñate,et al.  A plastic-damage model for concrete , 1989 .

[6]  A. Marí,et al.  Lateral behavior of concrete under uniaxial compressive cyclic loading , 2013 .

[7]  T. Rousakis,et al.  Concrete confined by FRP material: a plasticity approach , 2002 .

[8]  Antonio Nanni,et al.  FRP jacketed concrete under uniaxial compression , 1995 .

[9]  Yan Xiao,et al.  FRP-confined concrete under axial cyclic compression , 2006 .

[10]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[11]  Yu Bai,et al.  Cyclic Compressive Behavior of Concrete Confined with Large Rupture Strain FRP Composites , 2014 .

[12]  A. Mirmiran,et al.  Nonlinear finite element modeling of concrete confined by fiber composites , 2000 .

[13]  Athanasios I. Karabinis,et al.  Effects of Confinement on Concrete Columns: Plasticity Approach , 1994 .

[14]  Jin-Guang Teng,et al.  Analysis-oriented stress–strain models for FRP–confined concrete , 2007 .

[15]  V. Papanikolaou,et al.  Confinement-sensitive plasticity constitutive model for concrete in triaxial compression , 2007 .

[16]  Bibiana Luccioni,et al.  A plastic damage approach for confined concrete , 2005 .

[17]  Togay Ozbakkaloglu,et al.  Unified Stress-Strain Model for FRP and Actively Confined Normal-Strength and High-Strength Concrete , 2015 .

[18]  Sujeeva Setunge,et al.  Complete Triaxial Stress-Strain Curves of High-Strength Concrete , 2001 .

[19]  J. Shao,et al.  Elastoplastic damage modeling of desaturation and resaturation in argillites , 2010 .

[20]  Amir Mirmiran,et al.  Behavior of Concrete Columns Confined by Fiber Composites , 1997 .

[21]  Mohamed A. ElGawady,et al.  Finite element modelling and dilation of FRP-confined concrete columns , 2014 .

[22]  Peter Grassl,et al.  Modelling of dilation of concrete and its effect in triaxial compression , 2004 .

[23]  Togay Ozbakkaloglu,et al.  Behavior of FRP-Confined Normal- and High-Strength Concrete under Cyclic Axial Compression , 2012 .

[24]  M. R. Spoelstra,et al.  FRP-Confined Concrete Model , 2001 .

[25]  H. Toutanji,et al.  Stress-strain behavior of concrete columns confined with hybrid composite materials , 2002 .

[26]  Togay Ozbakkaloglu,et al.  Hoop strains in FRP-confined concrete columns: experimental observations , 2015 .

[27]  A. Mirmiran,et al.  Dilation characteristics of confined concrete , 1997 .

[28]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[29]  Chandrakant S. Desai,et al.  A hierarchical approach for constitutive modelling of geologic materials , 1986 .

[30]  Jian-Guo Dai,et al.  Behavior and Modeling of Concrete Confined with FRP Composites of Large Deformability , 2011 .

[31]  J. Dai,et al.  Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain , 2006 .

[32]  Surendra P. Shah,et al.  Softening Response of Plain Concrete in Direct Tension , 1985 .

[33]  Togay Ozbakkaloglu,et al.  Investigation of the Influence of the Application Path of Confining Pressure: Tests on Actively Confined and FRP-Confined Concretes , 2015 .

[34]  Tao Yu,et al.  Finite element modeling of confined concrete-II: Plastic-damage model , 2010 .

[35]  Ralejs Tepfers,et al.  Experimental investigation of concrete cylinders confined by carbon FRP sheets under monotonic and cyclic axial compressive loads , 2002 .

[36]  Zhishen Wu,et al.  Design-oriented stress–strain model for concrete prisms confined with FRP composites , 2007 .

[37]  L. Daudeville,et al.  Damage of concrete in a very high stress state: experimental investigation , 2010 .

[38]  Theodoros C. Rousakis,et al.  Hybrid Confinement of Concrete by Fiber-Reinforced Polymer Sheets and Fiber Ropes under Cyclic Axial Compressive Loading , 2013 .

[39]  I Imran,et al.  EXPERIMENTAL STUDY OF PLAIN CONCRETE UNDER TRIAXIAL STRESS. CLOSURE , 1996 .

[40]  Camillo Nuti,et al.  Closed form constitutive relationship for concrete filled FRP tubes under compression , 2007 .

[41]  Antonio Huerta,et al.  An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model , 2006 .

[42]  Jian-Fu Shao,et al.  A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions , 2006 .

[43]  Amir Mirmiran,et al.  Tests and modeling of carbon-wrapped concrete columns , 2000 .

[44]  Alper Ilki,et al.  COMPRESSIVE BEHAVIOUR OF CARBON FIBRE COMPOSITE JACKETED CONCRETE WITH CIRCULAR AND NON-CIRCULAR CROSS-SECTIONS , 2003 .

[45]  Timothy Ibell,et al.  Research issues related to the appropriate use of FRP in concrete structures , 2009 .

[46]  Jeeho Lee,et al.  Plastic-Damage Model for Cyclic Loading of Concrete Structures , 1998 .

[47]  Panos D. Kiousis,et al.  Analytical modelling of plastic behaviour of uniformly FRP confined concrete members , 2008 .

[48]  Yufei Wu,et al.  Effect of corner radius on the performance of CFRP-confined square concrete columns: Test , 2008 .

[49]  J. Mazars,et al.  The unilateral behaviour of damaged concrete , 1990 .

[50]  Yu-Fei Wu,et al.  Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns , 2012 .

[51]  I. Carol,et al.  Study of the Behavior of Concrete under Triaxial Compression , 2002 .

[52]  Togay Ozbakkaloglu,et al.  FRP-confined concrete in circular sections: Review and assessment of stress-strain models , 2013 .

[53]  P. Hamelin,et al.  Compressive behavior of concrete externally confined by composite jackets , 2006 .

[54]  J. Teng,et al.  Design-oriented stress–strain model for FRP-confined concrete , 2003 .

[55]  Tao Yu,et al.  Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement , 2015 .

[56]  Jin-Guang Teng,et al.  Theoretical Model for Fiber-Reinforced Polymer-Confined Concrete , 2007 .

[57]  Panos D. Kiousis,et al.  Plasticity computations for the design of the ductility of circular concrete columns , 1996 .

[58]  W. Krätzig,et al.  An elasto-plastic damage model for reinforced concrete with minimum number of material parameters , 2004 .

[59]  Iman Mansouri,et al.  Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques , 2016, Materials and Structures.

[60]  S. Yazdani,et al.  A unified constitutive theory for brittle solids , 1992 .

[61]  Amir Mirmiran,et al.  Model of Concrete Confined by Fiber Composites , 1998 .

[62]  Hamid Saadatmanesh,et al.  STRENGTH AND DUCTILITY OF CONCRETE COLUMNS EXTERNALLY REINFORCED WITH FIBER COMPOSITE STRAPS , 1994 .

[63]  Milan Jirásek,et al.  Damage-plastic model for concrete failure , 2006 .

[64]  Jian-Fu Shao,et al.  Elastoplastic deformation of a porous rock and water interaction , 2006 .

[65]  Sami H. Rizkalla,et al.  Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes , 2001 .

[66]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[67]  D. Zou,et al.  Experimental study of damage evolution in cuboid stirrup-confined concrete , 2015, Materials and Structures.

[68]  Roman Lackner,et al.  An anisotropic elastoplastic‐damage model for plain concrete , 1998 .

[69]  Peter Grassl,et al.  Concrete in compression: a plasticity theory with a novel hardening law , 2002 .

[70]  T. Rousakis Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement , 2016 .

[71]  Jin-Guang Teng,et al.  ULTIMATE CONDITION OF FIBER REINFORCED POLYMER-CONFINED CONCRETE , 2004 .

[72]  T. Rousakis,et al.  3D Finite-Element Analysis of Substandard RC Columns Strengthened by Fiber-Reinforced Polymer Sheets , 2008 .

[73]  Michael D. Kotsovos,et al.  A mathematical description of the deformational behaviour of concrete under complex loading , 1979 .

[74]  Stavroula J. Pantazopoulou,et al.  MICROSTRUCTURAL ASPECTS OF THE MECHANICAL RESPONSE OF PLAIN CONCRETE , 1995 .

[75]  P. Hamelin,et al.  COMPRESSIVE BEHAVIOR OF CONCRETE EXTERNALLY CONFINED BY COMPOSITE JACKETS. PART A: EXPERIMENTAL STUDY , 2005 .

[76]  M. Ispir Monotonic and Cyclic Compression Tests on Concrete Confined with PET-FRP , 2015 .

[77]  Kurt H. Gerstle,et al.  Concrete Over the Top--Or, is there Life After Peak? , 1989 .

[78]  S. Yazdani,et al.  A Constitutive Theory for Brittle Solids with Application to Concrete , 1996 .

[79]  Theodoros C. Rousakis Elastic Fiber Ropes of Ultrahigh-Extension Capacity in Strengthening of Concrete through Confinement , 2014 .