Miscibility phase diagrams of giant vesicles containing sphingomyelin.

Saturated sphingomyelin (SM) lipids are implicated in lipid rafts in cell plasma membranes. Here we use fluorescence microscopy to observe coexisting liquid domains in vesicles containing SM, an unsaturated phosphatidylcholine lipid (either DOPC or POPC), and cholesterol. We note similar phase behavior in a model membrane mixture without SM (DOPC/DPPC/Chol), but find no micron-scale liquid domains in membranes of POPC/PSM/Chol. We delineate the onset of solid phases below the miscibility transition temperature, and detail indirect evidence for a three-phase coexistence of one solid and two liquid phases.

[1]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[2]  M. Rao,et al.  Rafts: Scale‐Dependent, Active Lipid Organization at the Cell Surface , 2004, Traffic.

[3]  P. Olmsted,et al.  Lateral phase separation in mixtures of lipids and cholesterol , 2004, cond-mat/0402252.

[4]  David,et al.  Lateral phase separation in mixtures of lipids and choles- terol systems , 2004 .

[5]  P. Schwille,et al.  Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. , 2003, Biophysical journal.

[6]  S. Munro Lipid Rafts Elusive or Illusive? , 2003, Cell.

[7]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[8]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[9]  M. Prieto,et al.  Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. , 2003, Biophysical journal.

[10]  J. Silvius,et al.  Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. , 2003, Biophysical journal.

[11]  J. Killian,et al.  Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol , 2003, FEBS letters.

[12]  T. Nyholm,et al.  A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine. , 2003, Biophysical journal.

[13]  J. Silvius,et al.  Role of cholesterol in lipid raft formation: lessons from lipid model systems. , 2003, Biochimica et biophysica acta.

[14]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[15]  Ken Jacobson,et al.  A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains , 2002, Science.

[16]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[17]  G. Feigenson,et al.  Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. , 2001, Biophysical journal.

[18]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[19]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[20]  J. Slotte,et al.  Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins. , 1999, Biophysical journal.

[21]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[22]  E. Gratton,et al.  Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. , 1997, Biophysical journal.

[23]  M. Lafleur,et al.  Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. , 1996, Biochemistry.

[24]  G. Shipley,et al.  N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. , 1996, Biochemistry.

[25]  R. Griffin,et al.  A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. , 1993, Biochemistry.

[26]  James H. Davis,et al.  Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. , 1990, Biochemistry.

[27]  T. E. Thompson,et al.  Sphingomyelins in bilayers and biological membranes. , 1980, Biochimica et biophysica acta.

[28]  D. Barrow,et al.  Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. , 1980, Biochemistry.

[29]  T. E. Thompson,et al.  Thermal behavior of synthetic sphingomyelin-cholesterol dispersions. , 1979, Biochemistry.

[30]  T. E. The Phase Rule , 1897, Nature.