Metastability from the large deviations point of view: A $\Gamma$-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains

. Consider a sequence of continuous-time Markov chains ( X ( n ) t : t ≥ 0) evolving on a fixed finite state space V . Let I n be the level two large deviations rate functional for X ( n ) t , as t → ∞ . Under a hypothesis on the jump rates, we prove that I n can be written as I n = I (0) + P 1 ≤ p ≤ q (1 /θ ( p ) n ) I ( p ) for some rate functionals I ( p ) . The weights θ ( p ) n correspond to the time-scales at which the sequence of Markov chains X ( n ) t exhibit a metastable behavior, and the zero level sets of the rate functionals I ( p ) identify the metastable states.

[1]  C. Landim,et al.  Metastable $\Gamma$-expansion of finite state Markov chains level two large deviations rate functions , 2022, 2207.02588.

[2]  Non-reversible metastable diffusions with Gibbs invariant measure I: Eyring–Kramers formula , 2020, Probability Theory and Related Fields.

[3]  Second time scale of the metastability of reversible inclusion processes , 2020, 2007.05918.

[4]  I. Seo,et al.  Condensation and Metastable Behavior of Non-reversible Inclusion Processes , 2020, 2007.05202.

[5]  I. Seo Condensation of Non-reversible Zero-Range Processes , 2018, Communications in Mathematical Physics.

[6]  Metastability of one-dimensional, non-reversible diffusions with periodic boundary conditions , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[7]  Scaling Limit of Small Random Perturbation of Dynamical Systems , 2018, 1812.02069.

[8]  METASTABILITY OF ZERO RANGE PROCESSES VIA POISSON EQUATIONS , 2018 .

[9]  M. Mariani A Γ-convergence approach to large deviations , 2018 .

[10]  Metastable Markov chains: from the convergence of the trace to the convergence of the finite-dimensional distributions , 2017, 1703.09481.

[11]  A Dirichlet and a Thomson principle for non-selfadjoint elliptic operators, Metastability in non-reversible diffusion processes , 2017 .

[12]  Giacomo Di Gesù,et al.  Full Metastable Asymptotic of the Fisher Information , 2016, SIAM J. Math. Anal..

[13]  S. Dommers,et al.  Metastability in the reversible inclusion process , 2016, 1605.05140.

[14]  Leonid Koralov,et al.  Metastable Distributions of Markov Chains with Rare Transitions , 2016, 1607.07866.

[15]  C. Landim,et al.  Metastability of Nonreversible Random Walks in a Potential Field and the Eyring‐Kramers Transition Rate Formula , 2016, 1605.01009.

[16]  C. Landim,et al.  Metastability of finite state Markov chains: a recursive procedure to identify slow variables for model reduction , 2015, 1512.06597.

[17]  Katie Byl,et al.  Metastable Markov chains , 2014, 53rd IEEE Conference on Decision and Control.

[18]  C. Landim,et al.  Metastability of Reversible Random Walks in Potential Fields , 2014, 1408.6704.

[19]  P. Chleboun,et al.  Dynamics of Condensation in the Totally Asymmetric Inclusion Process , 2013, 1311.4814.

[20]  F. Redig,et al.  Dynamics of condensation in the symmetric inclusion process , 2012, 1210.3827.

[21]  M. Loulakis,et al.  Zero-range condensation at criticality , 2009, 0912.1793.

[22]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case , 2012, 1205.0445.

[23]  C. Landim Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes , 2012, 1204.5987.

[24]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains , 2009, 0910.4088.

[25]  C. Landim,et al.  Metastability of reversible condensed zero range processes on a finite set , 2009, 0910.4089.

[26]  Paolo Maria Mariano,et al.  A. Braides, Γ–convergence for beginners , 2007 .

[27]  A. Bovier,et al.  Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .

[28]  Andrea Braides Γ-convergence for beginners , 2002 .

[29]  Metastable behaviors of diffusion processes with small parameter , 1995 .

[30]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .