Optical gain based on NaYF4: Er3+, Yb3+ nanoparticles-doped polymer waveguide under convenient LED pumping

The relative optical gains at three near infrared wavelengths (1550 nm, 1064 nm, and 980 nm) were achieved in NaYF4: Er3+, Yb3+ nanoparticle-doped SU-8 waveguides when using two low-cost light-emitting diodes (LEDs) instead of traditional 980 nm semiconductor laser as pump source. The polymer waveguides were fabricated by one-step photolithography process. The fluorescence bands around 1550 nm and 1000 nm wavelengths due to the 4I13/2 → 4I15/2 transition of Er3+ ions and 2F5/2 → 2F7/2 transition of Yb3+ ions were observed under the excitation of 405 nm and 520 nm LEDs. By using the vertical top pumping mode of LEDs, the relative gains of 4.2 dB, 1.7 dB, and 2.1 dB at 1550 nm, 1064 nm, and 980 nm wavelengths were achieved, respectively, on a 10-mm-long waveguide.

[1]  Baoping Zhang,et al.  Optical properties of organic neodymium complex doped optical waveguides based on the intramolecular energy transfer effect , 2020 .

[2]  Fei Wang,et al.  Gain characteristics of the hybrid slot waveguide amplifiers integrated with NaYF4:Er3+ NPs-PMMA covalently linked nanocomposites , 2020, RSC advances.

[3]  Fei Wang,et al.  Great enhancement of relative gain in polymer waveguide amplifier using NaYF4/NaLuF4:Yb,Er-PMMA nanocomposite as gain media , 2020 .

[4]  Chun Jiang,et al.  Facile approach towards the fabrication of compact and miniature Er3+-doped waveguide amplifiers , 2019, OSA Continuum.

[5]  Haitao Guo,et al.  Near-infrared optical properties and thermal stability of proton-implanted Er3+/Yb3+ co-doped silicate glass waveguides , 2019, Results in Physics.

[6]  Linjie Zhou,et al.  High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser. , 2018, Optics express.

[7]  M. Zaborski,et al.  Polymer-based sensors: A review , 2018 .

[8]  Markus Pollnau,et al.  High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers. , 2018, Optics express.

[9]  M. Withford,et al.  2  W single-longitudinal-mode Yb:YAG distributed-feedback waveguide laser. , 2017, Optics Letters.

[10]  张美玲 Zhang Mei-ling,et al.  Fabrication of optical waveguide amplifiers based on bonding-type NaYF4∶Er nanoparticles-polymer , 2017 .

[11]  Fei Wang,et al.  High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites , 2016, Scientific Reports.

[12]  M. Ferrari,et al.  Tb3+/Yb3+ codoped silica–hafnia glass and glass–ceramic waveguides to improve the efficiency of photovoltaic solar cells , 2016 .

[13]  Markus Pollnau,et al.  Optical gain around 1.5 µm in erbium-doped waveguide amplifiers , 2015, 2015 17th International Conference on Transparent Optical Networks (ICTON).

[14]  Jun Xu,et al.  Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses , 2015 .

[15]  Fei Wang,et al.  Optical waveguide amplifiers based on NaYF_4: Er^3+, Yb^3+ NPs-PMMA covalent-linking nanocomposites , 2015 .

[16]  Fei Wang,et al.  Optical amplification at 1525 nm in BaYF 5 : 20% Yb 3+ , 2% Er 3+ nanocrystals doped SU-8 polymer waveguide , 2014 .

[17]  Ray T. Chen,et al.  Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  B. Garrido,et al.  Toward a 1.54 $\mu$m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier , 2013, Journal of Lightwave Technology.

[19]  Fei Wang,et al.  Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers , 2013 .

[20]  B Garrido,et al.  Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides. , 2012, Optics express.

[21]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[22]  Fei Wang,et al.  Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic–inorganic hybrid materials waveguide amplifier , 2010 .

[23]  Guangming Xu,et al.  Core-shell LaF3:Er,Yb nanocrystal doped sol–gel materials as waveguide amplifiers , 2009 .

[24]  B. Champagnon,et al.  The origin of spectral broadening of 1.53 μm emission in Er3+-doped zinc tellurite glass , 2009 .

[25]  Zhen Zhen,et al.  LaF3:Er,Yb doped sol–gel polymeric optical waveguide amplifiers , 2008 .

[26]  Chun-Sheng Ma,et al.  Optical gain at 1535nm in LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide , 2007 .

[27]  Joseph Zyss,et al.  Demonstration of net gain at 1550nm in an erbium-doped polymersingle mode rib waveguide , 2006 .

[28]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[29]  K. Chan,et al.  Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers , 2005 .

[30]  Edwin Yue-Bun Pun,et al.  Er3+–Yb3+ codoped polymeric optical waveguide amplifiers , 2004 .

[31]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[32]  Wolfgang Sohler,et al.  Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity , 2001 .

[33]  Niloy K. Dutta,et al.  Spectroscopic properties of Yb-doped silica glass , 2001, SPIE OPTO.

[34]  X. Zou,et al.  Evaluation of spectroscopic properties of Yb3+-doped glasses. , 1995, Physical review. B, Condensed matter.

[35]  W. E. Collins,et al.  Infrared to visible upconversion in Er3+‐doped‐lead‐germanate glass: Effects of Er3+ ion concentration , 1995 .