Formation control of multi-agent systems with double integrator dynamics using delayed static output feedback

In this paper a network of vehicles moving in a two dimensional plane, described by double integrator dynamics, is stabilized by a novel distributed control methodology, to maintain a formation. The distributed control architecture employs static output feedback using an artificial delay. Delays in communication of the relative information are exploited to stabilize the network system using state output feedback of position information only. The synthesis of the controller gains and the level of artificial delay, is posed as an optimization problem subject to the feasibility of a set of Linear Matrix Inequalities based on a discretized Lyapunov-Krasovskii functional.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[2]  A. Jadbabaie,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[5]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[6]  Wim Michiels,et al.  Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems: a comparison , 2004, IMA J. Math. Control. Inf..

[7]  Gerardo Lafferriere,et al.  Decentralized control of vehicle formations , 2005, Syst. Control. Lett..

[8]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[9]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[10]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  A. Jadbabaie,et al.  Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization , 2010, IEEE Transactions on Automatic Control.

[12]  K. Johansson,et al.  Consensus of double integrator multi-agents under communication delay , 2009 .

[13]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[14]  C.T. Abdallah,et al.  Experimental implementation of flocking algorithms in wheeled mobile robots , 2005, Proceedings of the 2005, American Control Conference, 2005..

[15]  Chaouki T. Abdallah,et al.  Some remarks on the delay stabilizing effect in SISO systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[16]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[17]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[18]  Vladimir L. Kharitonov,et al.  Exponential estimates for retarded time-delay systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[19]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[21]  Andrea L. Bertozzi,et al.  Stability of a second order consensus algorithm with time delay , 2008, 2008 47th IEEE Conference on Decision and Control.

[22]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[23]  Christopher Edwards,et al.  Static Output Feedback Sliding Mode Control Design via an Artificial Stabilizing Delay , 2009, IEEE Transactions on Automatic Control.

[24]  Karl Henrik Johansson,et al.  Consensus under communication delays , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  Wim Michiels,et al.  Static output feedback stabilization: necessary conditions for multiple delay controllers , 2005, IEEE Transactions on Automatic Control.

[26]  D. Finkel,et al.  Convergence analysis of the direct algorithm , 2004 .

[27]  Guangming Xie,et al.  Consensus control for a class of networks of dynamic agents , 2007 .

[28]  Chaouki T. Abdallah,et al.  Delay effects on static output feedback stabilization , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[29]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[30]  Ella M. Atkins,et al.  Distributed multi‐vehicle coordinated control via local information exchange , 2007 .

[31]  Dongjun Lee,et al.  Stable Flocking of Multiple Inertial Agents on Balanced Graphs , 2007, IEEE Transactions on Automatic Control.

[32]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[33]  Wei Ren,et al.  On Consensus Algorithms for Double-Integrator Dynamics , 2007, IEEE Transactions on Automatic Control.

[34]  Frank Allgöwer,et al.  Delay robustness in consensus problems , 2010, Autom..

[35]  Emilia Fridman,et al.  Descriptor discretized Lyapunov functional method: analysis and design , 2006, IEEE Transactions on Automatic Control.

[36]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[37]  Frank Allgöwer,et al.  Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays , 2008, 2008 47th IEEE Conference on Decision and Control.

[38]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.