暂无分享,去创建一个
[1] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[2] Andrew R. Barron,et al. High-rate sparse superposition codes with iteratively optimal estimates , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[3] Erdal Arikan,et al. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.
[4] Ramji Venkataramanan,et al. The error exponent of sparse regression codes with AMP decoding , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[5] Ramji Venkataramanan,et al. Finite Sample Analysis of Approximate Message Passing Algorithms , 2016, IEEE Transactions on Information Theory.
[6] Ramji Venkataramanan,et al. Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.
[7] Sekhar Tatikonda,et al. Sparse Regression Codes , 2019, Found. Trends Commun. Inf. Theory.
[8] F. Moore,et al. Polynomial Codes Over Certain Finite Fields , 2017 .
[9] Florent Krzakala,et al. Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.
[10] Rüdiger L. Urbanke,et al. Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.
[11] Sanghee Cho,et al. APPROXIMATE ITERATIVE BAYES OPTIMAL ESTIMATES FOR HIGH-RATE SPARSE SUPERPOSITION CODES , 2013 .
[12] Jun'ichi Takeuchi,et al. Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity , 2013, IEEE Transactions on Information Theory.
[13] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[14] Andrew R. Barron,et al. Fast Sparse Superposition Codes Have Near Exponential Error Probability for $R<{\cal C}$ , 2014, IEEE Transactions on Information Theory.
[15] Ramji Venkataramanan,et al. Capacity-achieving Sparse Regression Codes via approximate message passing decoding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[16] Andrew R. Barron,et al. Least squares superposition codes of moderate dictionary size, reliable at rates up to capacity , 2010, 2010 IEEE International Symposium on Information Theory.
[17] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[18] Ramji Venkataramanan,et al. Finite-sample analysis of Approximate Message Passing , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[19] Florent Krzakala,et al. Replica analysis and approximate message passing decoder for superposition codes , 2014, 2014 IEEE International Symposium on Information Theory.
[20] Charles Pugh,et al. Functions of a Real Variable , 2002 .
[21] Andrew R. Barron,et al. Toward fast reliable communication at rates near capacity with Gaussian noise , 2010, 2010 IEEE International Symposium on Information Theory.