An improved analysis of least squares superposition codes with bernoulli dictionary

For the additive white Gaussian noise channel with average power constraint, sparse superposition codes, proposed by Barron and Joseph in 2010, achieve the capacity. While the codewords of the original sparse superposition codes are made with a dictionary matrix drawn from a Gaussian distribution, we consider the case that it is drawn from a Bernoulli distribution. We show an improved upper bound on its block error probability with least squares decoding, which is fairly simplified and tighter bound than our previous result in 2014.

[1]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[2]  Andrew R. Barron,et al.  High-rate sparse superposition codes with iteratively optimal estimates , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[3]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[4]  Ramji Venkataramanan,et al.  The error exponent of sparse regression codes with AMP decoding , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[5]  Ramji Venkataramanan,et al.  Finite Sample Analysis of Approximate Message Passing Algorithms , 2016, IEEE Transactions on Information Theory.

[6]  Ramji Venkataramanan,et al.  Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.

[7]  Sekhar Tatikonda,et al.  Sparse Regression Codes , 2019, Found. Trends Commun. Inf. Theory.

[8]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[9]  Florent Krzakala,et al.  Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.

[10]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[11]  Sanghee Cho,et al.  APPROXIMATE ITERATIVE BAYES OPTIMAL ESTIMATES FOR HIGH-RATE SPARSE SUPERPOSITION CODES , 2013 .

[12]  Jun'ichi Takeuchi,et al.  Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity , 2013, IEEE Transactions on Information Theory.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Andrew R. Barron,et al.  Fast Sparse Superposition Codes Have Near Exponential Error Probability for $R<{\cal C}$ , 2014, IEEE Transactions on Information Theory.

[15]  Ramji Venkataramanan,et al.  Capacity-achieving Sparse Regression Codes via approximate message passing decoding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[16]  Andrew R. Barron,et al.  Least squares superposition codes of moderate dictionary size, reliable at rates up to capacity , 2010, 2010 IEEE International Symposium on Information Theory.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Ramji Venkataramanan,et al.  Finite-sample analysis of Approximate Message Passing , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[19]  Florent Krzakala,et al.  Replica analysis and approximate message passing decoder for superposition codes , 2014, 2014 IEEE International Symposium on Information Theory.

[20]  Charles Pugh,et al.  Functions of a Real Variable , 2002 .

[21]  Andrew R. Barron,et al.  Toward fast reliable communication at rates near capacity with Gaussian noise , 2010, 2010 IEEE International Symposium on Information Theory.