Handwritten signatures recognition using Liquid State Machine

In this work, we checked the possibility of using Biological Neural Networks to analyse the complex multi-dimensional features for purposes of data recognition and classification. We investigated a recently proposed model 'Liquid State Machine (LSM) using spiking neural network' and its applicability for recognition of the 'handwritten signature problem'. This project includes complex data analysis, adaptation of visual features to the neural microcircuit and comparison of the results with baseline algorithms. Experiments show that 90% correct classification rate can be achieved on a database of over 8000 signature images.

[1]  Wulfram Gerstner,et al.  Spiking Neuron Models: An Introduction , 2002 .

[2]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[3]  Kejun Wang,et al.  A survey of off-line signature verification , 2004 .

[4]  Grzegorz M. Wójcik,et al.  Liquid state machine built of Hodgkin-Huxley neurons-pattern recognition and informational entropy , 2015, Ann. UMCS Informatica.

[5]  Miguel Angel Ferrer-Ballester,et al.  Offline geometric parameters for automatic signature verification using fixed-point arithmetic , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Dan Ventura,et al.  Spatiotemporal Pattern Recognition via Liquid State Machines , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[7]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[8]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[9]  Hamid Reza Pourreza,et al.  Offline Signature Verification Using Local Radon Transform and Support Vector Machines , 2009 .

[10]  J. V. Tucker,et al.  Can excitable media be considered as computational systems , 1991 .

[11]  Kun Wang,et al.  The Application of Liquid State Machines in Robot Path Planning , 2009, J. Comput..

[12]  Benjamin Schrauwen,et al.  Isolated word recognition using a Liquid State Machine , 2005, ESANN.