An Evaluation Framework and a Benchmark for Multi/Hyperspectral Image Compression

This paper benchmarks three multi/hyperspectral image compression approaches: the classic Multi-2D compression approach and two different implementations of 3D approach Full 3D and Hybrid. All approaches are combined with a spectral PCA decorrelation stage to optimize performance. These three compression approaches are compared within a larger comparison framework than the conventionally used PSNR, which includes eight metrics divided into three families. The comparison is carried out with regard to variations in bitrates, spatial, and spectral dimensions variations of images. The time and memory consumption difference between the three approaches is also discussed. Results of this comparison show the weaknesses and strengths of each approach.

[1]  Allen Gersho,et al.  Feature predictive vector quantization of multispectral images , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Yoshitaka Sakurai,et al.  Adaptive Kansei Search Method Using User's Subjective Criterion Deviation , 2011, Int. J. Comput. Vis. Image Process..

[3]  Kwanghoon Sohn,et al.  Compression for hyperspectral images using three dimensional wavelet transform , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[4]  Tae-Sun Choi,et al.  Depth Map and 3D Imaging Applications: Algorithms and Technologies , 2011 .

[5]  Dimitrios I. Fotiadis,et al.  Intravascular Imaging: Current Applications and Research Developments , 2011 .

[6]  Arto Kaarna,et al.  Multispectral image compression , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[7]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[8]  Paul S. Fisher,et al.  A Survey of Quality Measures for Gray Scale Image Compression , 1993 .

[9]  Mona Nafari,et al.  Reversible Data Hiding Based on Statistical Correlation of Blocked Sub-Sampled Image , 2012, Int. J. Comput. Vis. Image Process..

[10]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[11]  Khalid Idrissi,et al.  A Semi-Supervised Metric Learning for Content-Based Image Retrieval , 2011, Int. J. Comput. Vis. Image Process..

[12]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2013, The Kluwer international series in engineering and computer science.

[13]  Ye Zhang,et al.  A kernel based nonlinear subspace projection method for reduction of hyperspectral image dimensionality , 2002, Proceedings. International Conference on Image Processing.

[14]  A. Kaarna,et al.  Compression and classification methods for hyperspectral images , 2006, Pattern Recognition and Image Analysis.

[15]  R. Hingorani,et al.  Multispectral Image Compression By Wavelet / Karhunen-loeve Transformation , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[16]  Giovanni Poggi,et al.  Compression of multispectral images by three-dimensional SPIHT algorithm , 2000, IEEE Trans. Geosci. Remote. Sens..

[17]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[18]  Gauthier Lafruit,et al.  Low-Complexity Stereo Matching and Viewpoint Interpolation in Embedded Consumer Applications , 2012 .

[19]  Arto Kaarna,et al.  Wavelet filter selection in multispectral image compression , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[20]  Arto Kaarna Integer PCA and wavelet transforms for multispectral image compression , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[21]  Mohamed M. Fouad,et al.  Image Compression Technique for Low Bit Rate Transmission , 2011, Int. J. Comput. Vis. Image Process..

[22]  J. Hardeberg,et al.  Representation and estimation of spectral reflectances using projection on PCA and wavelet bases , 2008 .

[23]  Michael W. Marcellin,et al.  Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT , 1995, IEEE Trans. Geosci. Remote. Sens..

[24]  William A. Pearlman,et al.  3D set partitioning coding methods in hyperspectral image compression , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[25]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[26]  Saliha Aouat Shape Codification Indexing and Retrieval Using the Quad-Tree Structure , 2013, Int. J. Comput. Vis. Image Process..

[27]  Muhammad Sarfraz Intelligent Computer Vision and Image Processing: Innovation, Application, and Design , 2013 .

[28]  Eduardo Romero,et al.  Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques , 2009 .

[29]  Qian Du,et al.  Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis , 2007, IEEE Geoscience and Remote Sensing Letters.

[30]  Touradj Ebrahimi,et al.  The JPEG2000 still image coding system: an overview , 2000, IEEE Trans. Consumer Electron..

[31]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Helge Ritter,et al.  Influence of Movement Expertise on Visual Perception of Objects, Events and Motor Action- A Modeling Approach. , 2012 .

[33]  Marthie de Kock Artificial Intelligence for Maximizing Content‐Based Image Retrieval , 2009 .

[34]  Mahantapas Kundu,et al.  Human Face Recognition using Gabor based Kernel Entropy Component Analysis , 2012, Int. J. Comput. Vis. Image Process..

[35]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[36]  P. Wintz,et al.  Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery , 1973, IEEE Trans. Commun..

[37]  Junichi Suzuki,et al.  Developing and Applying Biologically-Inspired Vision Systems: Interdisciplinary Concepts , 2012 .

[38]  Lena Chang,et al.  An efficient adaptive KLT for multispectral image compression , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[39]  William A. Pearlman,et al.  An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT) , 1997, Proceedings DCC '97. Data Compression Conference.

[40]  Anand Singh Jalal,et al.  Adapted Approach for Fruit Disease Identification using Images , 2012, Int. J. Comput. Vis. Image Process..

[41]  Corinne Mailhes,et al.  NEW QUALITY REPRESENTATION FOR HYPERSPECTRAL IMAGES , 2008 .

[42]  Paul S. Fisher,et al.  Image quality measures and their performance , 1995, IEEE Trans. Commun..

[43]  J. Saghri,et al.  Near-lossless bandwidth compression for radiometric data , 1991 .

[44]  Toufik Taibi Design Pattern Formalization Techniques , 2007 .

[45]  Arto Kaarna,et al.  Improved back end for integer PCA and wavelet transforms for lossless compression of multispectral images , 2002, Object recognition supported by user interaction for service robots.

[46]  Zixiang Xiong,et al.  Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT) , 2000, IEEE Trans. Circuits Syst. Video Technol..

[47]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[48]  Arto Kaarna,et al.  Wavelet Compression of Multispectral Images , 1998 .

[49]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .