Glycoproteomics based on tandem mass spectrometry of glycopeptides.

[1]  G. Lienhard,et al.  The binding of boronic acids to chymotrypsin. , 1974, Biochemistry.

[2]  J. Shabanowitz,et al.  Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[4]  André M Deelder,et al.  Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. , 2006, Rapid communications in mass spectrometry : RCM.

[5]  B. Budnik,et al.  Dissociative capture of hot (3-13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation , 2002 .

[6]  Francis M. Wampler,et al.  Fourier-transform electrospray instrumentation for tandem high-resolution mass spectrometry of large molecules , 1993, Journal of the American Society for Mass Spectrometry.

[7]  P. Højrup,et al.  Characterization of Gel-separated Glycoproteins Using Two-step Proteolytic Digestion Combined with Sequential Microcolumns and Mass Spectrometry* , 2005, Molecular & Cellular Proteomics.

[8]  A. Burlingame,et al.  Identification of Novel Sites of O-N-Acetylglucosamine Modification of Serum Response Factor Using Quadrupole Time-of-flight Mass Spectrometry* , 2003, Molecular & Cellular Proteomics.

[9]  Katalin F Medzihradszky,et al.  Peptide sequence analysis. , 2005, Methods in enzymology.

[10]  Ruedi Aebersold,et al.  High Throughput Quantitative Analysis of Serum Proteins Using Glycopeptide Capture and Liquid Chromatography Mass Spectrometry *S , 2005, Molecular & Cellular Proteomics.

[11]  J. Peter-Katalinic,et al.  Coupling of fully automated chip electrospray to Fourier transform ion cyclotron resonance mass spectrometry for high-performance glycoscreening and sequencing. , 2004, Rapid communications in mass spectrometry : RCM.

[12]  Hisashi Narimatsu,et al.  Strategy for simulation of CID spectra of N-linked oligosaccharides toward glycomics. , 2006, Journal of proteome research.

[13]  K. Medzihradszky In-solution digestion of proteins for mass spectrometry. , 2005, Methods in enzymology.

[14]  J. Michalski,et al.  Characterization of N-glycans of recombinant human thyrotropin using mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[15]  S. Nishimura,et al.  Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. , 2006, Journal of chromatography. A.

[16]  Amanda Doherty-Kirby,et al.  Investigation of cationic peanut peroxidase glycans by electrospray ionization mass spectrometry. , 2004, Phytochemistry.

[17]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[18]  Mikhail M Savitski,et al.  Improving Protein Identification Using Complementary Fragmentation Techniques in Fourier Transform Mass Spectrometry* , 2005, Molecular & Cellular Proteomics.

[19]  H. Geyer,et al.  Strategies for Glycoconjugate Analysis , 1998, Cells Tissues Organs.

[20]  B. Devreese,et al.  The Q-trap mass spectrometer, a novel tool in the study of protein glycosylation , 2004, Journal of the American Society for Mass Spectrometry.

[21]  R. Geyer,et al.  Saccharide linkage analysis using methylation and other techniques. , 1994, Methods in enzymology.

[22]  J. Peter-Katalinic,et al.  Glycoscreening by on‐line sheathless capillary electrophoresis/electrospray ionization‐quadrupole time of flight‐tandem mass spectrometry , 2001, Electrophoresis.

[23]  W. Hancock,et al.  Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap--Fourier transform mass spectrometry. , 2006, Glycobiology.

[24]  Michael J Deery,et al.  Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures , 2002, Journal of the American Society for Mass Spectrometry.

[25]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[26]  H. Cooper,et al.  Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry* , 2005, Journal of Biological Chemistry.

[27]  R. Caprioli,et al.  Characterization of the glycosylation sites in cyclooxygenase-2 using mass spectrometry. , 2001, Biochemistry.

[28]  Jakob Bunkenborg,et al.  A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. , 2004, Journal of proteome research.

[29]  J. Hirabayashi Lectin-based structural glycomics: Glycoproteomics and glycan profiling , 2004, Glycoconjugate Journal.

[30]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[31]  D. Ashline,et al.  Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. , 2005, Analytical chemistry.

[32]  M. Emmett,et al.  High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. , 2001, Analytical chemistry.

[33]  T. Takao,et al.  N‐glycosylation at Asn491 in the Asn‐Xaa‐Cys motif of human transferrin , 2004, FEBS letters.

[34]  M. Tajiri,et al.  Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. , 2004, Analytical chemistry.

[35]  M F Bean,et al.  Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. , 1993, Analytical chemistry.

[36]  H. Desaire,et al.  Glycoprotein profiling by electrospray mass spectrometry , 2004, Journal of the American Society for Mass Spectrometry.

[37]  B. Maček,et al.  C-Mannosylation and O-Fucosylation of the Thrombospondin Type 1 Module* , 2001, The Journal of Biological Chemistry.

[38]  W. Michalski The Mass Spectrometric Analysis of Glycoproteins and their Glycan Structures , 2005 .

[39]  R. Chalkley,et al.  Identification of GlcNAcylation sites of peptides and α-crystallin using Q-TOF mass spectrometry , 2001 .

[40]  H. Cooper,et al.  The role of electron capture dissociation in biomolecular analysis. , 2005, Mass spectrometry reviews.

[41]  J. Peter-Katalinic,et al.  High Density O-Glycosylation on Tandem Repeat Peptide from Secretory MUC1 of T47D Breast Cancer Cells* , 1999, The Journal of Biological Chemistry.

[42]  R. Zubarev,et al.  Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. , 1999, Analytical chemistry.

[43]  R. Orlando,et al.  Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. , 2006, Journal of proteome research.

[44]  Albert Sickmann,et al.  Elucidation of N-Glycosylation Sites on Human Platelet Proteins , 2006, Molecular & Cellular Proteomics.

[45]  T. Hayakawa,et al.  Characterization of a gel-separated unknown glycoprotein by liquid chromatography/multistage tandem mass spectrometry: analysis of rat brain Thy-1 separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. , 2005, Journal of chromatography. A.

[46]  Jason C. Rogalski,et al.  Specific detection of O-linked N-acetylhexosamine modified peptides using multiple precursor ion scans. , 2005, Rapid communications in mass spectrometry : RCM.

[47]  F. Regnier,et al.  Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. , 2005, Analytical chemistry.

[48]  Hiroaki Nakagawa,et al.  High Throughput Quantitative Glycomics and Glycoform-focused Proteomics of Murine Dermis and Epidermis* , 2005, Molecular & Cellular Proteomics.

[49]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[50]  W. Hancock,et al.  Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. , 2004, Journal of chromatography. A.

[51]  A. Casadevall,et al.  Site-specific characterization of the N-linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/electrospray mass spectrometry. , 2003, Analytical biochemistry.

[52]  A. Burlingame,et al.  Structure determination of O-linked glycopeptides by tandem mass spectrometry. , 1990, Biomedical & environmental mass spectrometry.

[53]  André M Deelder,et al.  Protein glycosylation analysis by liquid chromatography-mass spectrometry. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[54]  G. Allmaier,et al.  Characterization of glyco isoforms in plasmaderived human antithrombin by on‐line capillary zone electrophoresis‐electrospray ionization‐quadrupole ion trap‐mass spectrometry of the intact glycoproteins , 2004, Electrophoresis.

[55]  F W McLafferty,et al.  Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. , 1994, Analytical chemistry.

[56]  A. Deelder,et al.  New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. , 2005, Biochimica et biophysica acta.

[57]  Xavier Collet,et al.  Site‐specific detection and structural characterization of the glycosylation of human plasma proteins lecithin:cholesterol acyltransferase and apolipoprotein D using HPLC/electrospray mass spectrometry and sequential glycosidase digestion , 1995, Protein science : a publication of the Protein Society.

[58]  Andrew Gooley,et al.  Localization of O-Glycosylation Sites on Glycopeptide Fragments from Lactation-associated MUC1 , 1997, The Journal of Biological Chemistry.

[59]  S. Nishimura,et al.  Post-translational modifications on proteins: facile and efficient procedure for the identification of O-glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry. , 2004, Angewandte Chemie.

[60]  J. Peter-Katalinic,et al.  Electron Capture Dissociation of O-Glycosylated Peptides: Radical Site-Induced Fragmentation of Glycosidic Bonds , 2005, European journal of mass spectrometry.

[61]  T. Hayakawa,et al.  Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. , 2006, Analytical biochemistry.

[62]  Hailong Zhang,et al.  Congruent strategies for carbohydrate sequencing. 2. FragLib: an MSn spectral library. , 2005, Analytical chemistry.

[63]  H. Perreault,et al.  Site‐specific N‐glycosylation analysis: matrix‐assisted laser desorption/ionization quadrupole‐quadrupole time‐of‐flight tandem mass spectral signatures for recognition and identification of glycopeptides , 2004, Rapid communications in mass spectrometry : RCM.

[64]  Katsutoshi Takahashi,et al.  A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. , 2005, Analytical chemistry.

[65]  Jonathan C Trinidad,et al.  O-Linked N-Acetylglucosamine Proteomics of Postsynaptic Density Preparations Using Lectin Weak Affinity Chromatography and Mass Spectrometry*S , 2006, Molecular & Cellular Proteomics.

[66]  H. Cooper,et al.  Data-dependent electron capture dissociation FT-ICR mass spectrometry for proteomic analyses. , 2005, Journal of proteome research.

[67]  H. Brumer,et al.  N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A. , 2003, The Biochemical journal.

[68]  A. Deelder,et al.  Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. , 2005, Analytical chemistry.

[69]  J. Peter-Katalinic,et al.  Localization of O-glycosylation sites of MUC1 tandem repeats by QTOF ESI mass spectrometry. , 1998, Journal of mass spectrometry : JMS.

[70]  A G Marshall,et al.  Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. , 2001, Analytical chemistry.

[71]  N. Komori,et al.  Highly sensitive multistage mass spectrometry enables small‐scale analysis of protein glycosylation from two‐dimensional polyacrylamide gels , 2006, Electrophoresis.

[72]  Y. She,et al.  A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. , 2004, Analytical biochemistry.

[73]  W. Ens,et al.  Determination and characterization of site-specific N-glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. , 2006, Analytical chemistry.

[74]  R. Cummings,et al.  Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. , 1982, The Journal of biological chemistry.

[75]  F. Regnier,et al.  Use of multidimensional lectin affinity chromatography in differential glycoproteomics. , 2005, Analytical chemistry.

[76]  Christian W Klampfl,et al.  Recent advances in the application of capillary electrophoresis with mass spectrometric detection , 2006, Electrophoresis.

[77]  J. Peter-Katalinic,et al.  Sialylation analysis of O-glycosylated sialylated peptides from urine of patients suffering from Schindler's disease by Fourier transform ion cyclotron resonance mass spectrometry and sustained off-resonance irradiation collision-induced dissociation. , 2003, Rapid communications in mass spectrometry : RCM.

[78]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[79]  Scott A McLuckey,et al.  Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2*-. , 2005, Analytical chemistry.

[80]  S. Amon,et al.  Capillary zone electrophoresis of glycopeptides under controlled electroosmotic flow conditions coupled to electrospray and matrix‐assisted laser desorption/ionization mass spectrometry , 2006, Electrophoresis.

[81]  Yehia Mechref,et al.  Structural investigations of glycoconjugates at high sensitivity. , 2002, Chemical reviews.

[82]  B K Hayes,et al.  Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. , 1996, Analytical biochemistry.

[83]  M. F. Bean,et al.  Selective identification and differentiation of N‐and O‐linked oligosaccharides in glycoproteins by liquid chromatography‐mass spectrometry , 1993, Protein science : a publication of the Protein Society.

[84]  J. Hirabayashi,et al.  Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography. , 2006, Glycobiology.

[85]  A. Dell,et al.  Differential O-glycosylation of a conserved domain expressed in murine and human ZP3. , 2006, Biochemistry.

[86]  J. Peter-Katalinic,et al.  Characterization of O-glycosylation sites in MUC2 glycopeptides by nanoelectrospray QTOF mass spectrometry. , 1999, Journal of mass spectrometry : JMS.

[87]  J. Bergquist,et al.  Liquid chromatography and electron-capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. , 2002, Rapid communications in mass spectrometry : RCM.

[88]  James Paulson,et al.  Automatic annotation of matrix‐assisted laser desorption/ionization N‐glycan spectra , 2005, Proteomics.

[89]  B. Budnik,et al.  Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. , 2001, Rapid communications in mass spectrometry : RCM.

[90]  Michiko Tajiri,et al.  Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. , 2005, Glycobiology.

[91]  Frank Kjeldsen,et al.  Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. , 2003, Analytical chemistry.

[92]  S. Nishimura,et al.  Structural characterization of N-glycopeptides by matrix-dependent selective fragmentation of MALDI-TOF/TOF tandem mass spectrometry. , 2004, Analytical chemistry.

[93]  K. F. Medzihradszkyaff,et al.  Structural elucidation of O-linked glycopeptides by high energy collision-induced dissociation , 1996, Journal of the American Society for Mass Spectrometry.

[94]  Steven A Carr,et al.  Selective detection of glycopeptides on ion trap mass spectrometers. , 2004, Analytical chemistry.

[95]  Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates , 2003 .

[96]  Ruedi Aebersold,et al.  Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry , 2003, Nature Biotechnology.

[97]  N. Packer,et al.  A general approach to desalting oligosaccharides released from glycoproteins , 1998, Glycoconjugate Journal.

[98]  R. Woodin,et al.  Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation , 1978 .

[99]  Wei Sun,et al.  Concanavalin A-captured Glycoproteins in Healthy Human Urine *S , 2006, Molecular & Cellular Proteomics.

[100]  R. Dwek,et al.  Glycobiology , 2018, Biochimie.

[101]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[102]  Hiroaki Nakagawa,et al.  High-throughput protein glycomics: combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. , 2004, Angewandte Chemie.

[103]  Scott A McLuckey,et al.  Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. , 2005, Journal of proteome research.

[104]  J. Zaia Mass spectrometry of oligosaccharides. , 2004, Mass spectrometry reviews.

[105]  J. Marxen,et al.  The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. , 2003, Biochimica et biophysica acta.

[106]  J. Leykam,et al.  Tandem Mass Spectrometry and Structural Elucidation of Glycopeptides from a Hydroxyproline-rich Plant Cell Wall Glycoprotein Indicate That Contiguous Hydroxyproline Residues Are the Major Sites of Hydroxyproline O-Arabinosylation (*) , 1995, Journal of Biological Chemistry.

[107]  M. J. Chalmers,et al.  Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. , 2003, Analytical chemistry.

[108]  A. Podtelejnikov,et al.  Screening for N‐glycosylated proteins by liquid chromatography mass spectrometry , 2004, Proteomics.

[109]  Ronald J Moore,et al.  Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. , 2005, Journal of proteome research.

[110]  J. Peter-Katalinic,et al.  Sheathless reverse‐polarity capillary electrophoresis‐electrospray‐mass spectrometry for analysis of underivatized glycoconjugates , 2005, Electrophoresis.

[111]  M. Buse,et al.  Identification of the Major Site of O-Linked β-N-Acetylglucosamine Modification in the C Terminus of Insulin Receptor Substrate-1 *S , 2006, Molecular & Cellular Proteomics.

[112]  J. Hirabayashi,et al.  Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins , 2003, Nature Biotechnology.

[113]  W. Hancock,et al.  Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. , 2005, Journal of chromatography. A.

[114]  Fred W. McLafferty,et al.  Hydrogen Atom Loss in Electron-Capture Dissociation: A Fourier Transform-Ion Cyclotron Resonance Study with Single Isotopomeric Ubiquitin Ions , 2002 .

[115]  S. Nishimura,et al.  Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans. , 2006, Rapid communications in mass spectrometry : RCM.

[116]  A. Burlingame,et al.  Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. , 1997, Analytical chemistry.

[117]  R. Zeng,et al.  Capillary electrophoresis-electrospray mass spectrometry for the characterization of high-mannose-type N-glycosylation and differential oxidation in glycoproteins by charge reversal and protease/glycosidase digestion. , 2001, Analytical chemistry.

[118]  D. Sleat,et al.  Identification of Sites of Mannose 6-Phosphorylation on Lysosomal Proteins* , 2006, Molecular & Cellular Proteomics.

[119]  R. Dwek,et al.  "Internal residue loss": rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. , 2002, Analytical chemistry.

[120]  B. Maček,et al.  Direct determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight mass spectrometry. , 2001, Rapid communications in mass spectrometry : RCM.

[121]  K. Khoo,et al.  Structural mapping of the glycans from the egg glycoproteins of Schistosoma mansoni and Schistosoma japonicum: identification of novel core structures and terminal sequences. , 1997, Glycobiology.

[122]  T. Takao,et al.  Site-specific carbohydrate profiling of human transferrin by nano-flow liquid chromatography/electrospray ionization mass spectrometry. , 2004, Rapid communications in mass spectrometry : RCM.

[123]  A. Burlingame,et al.  Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. , 1999, Biochemistry.

[124]  K. Biemann Mass spectrometry of peptides and proteins. , 1992, Annual review of biochemistry.

[125]  H. Steen,et al.  Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning , 2003, Journal of the American Society for Mass Spectrometry.

[126]  Hong Li,et al.  The human brain mannose 6‐phosphate glycoproteome: A complex mixture composed of multiple isoforms of many soluble lysosomal proteins , 2005, Proteomics.

[127]  B. Domon,et al.  A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates , 1988, Glycoconjugate Journal.

[128]  B. Budnik,et al.  Towards An Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas , 2002 .

[129]  T. R. Trautman,et al.  Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation , 1991 .

[130]  C. Gielens,et al.  Mass spectral evidence for N-glycans with branching on fucose in a molluscan hemocyanin. , 2005, Biochemical and biophysical research communications.

[131]  J. Peter-Katalinic,et al.  Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides , 1998 .

[132]  M. Zehl,et al.  Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. , 2004, Rapid communications in mass spectrometry : RCM.

[133]  B. Maček,et al.  C-Mannosylation and O-Fucosylation of Thrombospondin Type 1 Repeats* , 2002, Molecular & Cellular Proteomics.

[134]  R. Siciliano,et al.  Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. , 2005, Journal of mass spectrometry : JMS.

[135]  K. Markides,et al.  Capillary Electrophoresis and Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Peptide Mixture and Protein Digest Analysis , 2002 .

[136]  J. Peter-Katalinic,et al.  Analysis of the Pre-S2 N- and O-Linked Glycans of the M Surface Protein from Human Hepatitis B Virus* , 1999, The Journal of Biological Chemistry.

[137]  J. Olsen,et al.  Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry. , 2001, Analytical chemistry.

[138]  K. Mann,et al.  LacdiNAc (GalNAcbeta1-4GlcNAc) is a major motif in N-glycan structures of the chicken eggshell protein ovocleidin-116. , 2004, Biochimica et biophysica acta.

[139]  A. Burlingame,et al.  Characterization of O-glycosylation sites in recombinant B-chain of platelet-derived growth factor expressed in yeast using liquid secondary ion mass spectrometry, tandem mass spectrometry and Edman sequence analysis. , 1990, Biomedical & environmental mass spectrometry.

[140]  A. Deelder,et al.  IPSE/alpha‐1, a major secretory glycoprotein antigen from schistosome eggs, expresses the Lewis X motif on core‐difucosylated N‐glycans , 2006, The FEBS journal.

[141]  K. Håkansson,et al.  Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. , 2006, Journal of proteome research.

[142]  M. Saraste,et al.  FEBS Lett , 2000 .

[143]  A. Deelder,et al.  Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. , 2004, Rapid communications in mass spectrometry : RCM.