Low temperature epitaxial growth of SiGe absorber for thin film heterojunction solar cells

Abstract Silicon germanium alloys are of great interest for thin film solar cells, thanks to their adjustable bandgap and stronger absorption when compared to Si. SiGe alloys are herein epitaxially grown on (100) c-Si substrates at 175 °C in a standard RF-PECVD reactor from H 2 /SiH 4 /GeH 4 precursor gas mixture. A linear correlation is found between the GeH 4 /(SiH 4 + GeH 4 ) gas ratio and Ge content in the layer, with epitaxial growth being maintained up to 35% Ge. The alloy composition deduced from spectroscopic ellipsometry shows excellent agreement with Raman spectroscopy, glow discharge optical emission spectroscopy and SIMS-MCs + analysis. Epitaxial SiGe strain and defects, arising from lattice mismatch, are studied as function of Ge atomic percentage by Raman and transmission electron microscopy. The SiGe electrical quality is investigated by making heterojunctions solar cells stacks, consisting of (p++)c-Si wafer/epi-Si 0.63 Ge 0.27 /(n)aSi:H, and comparing their characteristics to pure silicon equivalent devices. External quantum efficiency confirmed a short circuit current of 18.8 mA/cm 2 with a thin 1.9 µm absorber and flat interfaces, along with a fill factor of 77.5% and an open circuit voltage of 416 mV, resulting in a conversion efficiency of 6.1%.

[1]  M. Sanyal,et al.  Exact compositional analysis of SiGe alloys by matrix effect compensated MCs+-SIMS , 2012 .

[2]  R. Cariou,et al.  Low temperature plasma deposition of silicon thin films: From amorphous to crystalline , 2012 .

[3]  M. Kondo,et al.  Microcrystalline silicon-germanium alloys for solar cell application : Growth and material properties , 2006 .

[4]  R. Cariou,et al.  Thin crystalline silicon solar cells based on epitaxial films grown at 165 °C by RF-PECVD , 2011 .

[5]  K. Matsubara,et al.  High-quality SiGe films grown with compositionally graded buffer layers for solar cell applications , 2013 .

[6]  Chuang‐Chuang Tsai,et al.  Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma , 1991 .

[7]  People Erratum: Indirect band gap of coherently strained GexSil-x bulk alloys on <001> silicon substrates , 1985, Physical review. B, Condensed matter.

[8]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[9]  Akira Sakai,et al.  Fabrication technology of SiGe hetero-structures and their properties , 2005 .

[10]  Seiichi Kiyama,et al.  Microcrystalline silicon-germanium solar cells for multi-junction structures , 2002 .

[11]  R. Cariou,et al.  Silicon epitaxy below 200°C: towards thin crystalline solar cells , 2012, Other Conferences.

[12]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[13]  P. Cabarrocas,et al.  Ultra-thin crystalline silicon films produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates , 2010 .

[14]  J. Sangrador,et al.  Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization , 2000 .

[15]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[16]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[17]  M. R. Islam,et al.  Raman scattering characterization of residual strain and alloy composition in bulk Si1−xGex crystal , 2004 .

[18]  E. Kasper,et al.  Challenges of high Ge content silicon germanium structures , 2004 .

[19]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[20]  J. Werner,et al.  Contribution of silicon substrates to the efficiencies of silicon thin layer solar cells , 1997 .

[21]  D. Shahrjerdi,et al.  Low-Temperature Epitaxy of Compressively Strained Silicon Directly on Silicon Substrates , 2012, Journal of Electronic Materials.

[22]  J. Hartmann,et al.  Quantification of SiGe layer composition using MCs+ and MCs2+ secondary ions in ToF-SIMS and magnetic SIMS , 2008 .

[23]  R. Cariou,et al.  Low-temperature SiGe PECVD epitaxy: From wafer equivalent to ultra-thin crystalline solar cells on inexpensive substrates , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[24]  A. R. Moore,et al.  Intrinsic Optical Absorption in Germanium-Silicon Alloys , 1958 .

[25]  J. Poortmans,et al.  Epitaxy‐free monocrystalline silicon thin film: first steps beyond proof‐of‐concept solar cells , 2011 .

[26]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[27]  L. Largeau,et al.  Epitaxial growth of silicon and germanium on (100)-oriented crystalline substrates by RF PECVD at 175 °C , 2012 .

[28]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[29]  R. Loo,et al.  High quality, relaxed SiGe epitaxial layers for solar cell application , 1999 .

[30]  R. Cariou,et al.  Low Temperature Plasma Synthesis of Nanocrystals and their Application to the Growth of Crystalline Silicon and Germanium Thin Films , 2012 .

[31]  H. Fujiwara,et al.  Thin film solar cells based on microcrystalline silicon–germanium narrow-gap absorbers , 2009 .

[32]  A. Gallagher,et al.  Plasma chemistry in silane/germane and disilane/germane mixtures , 1992 .

[33]  P. Hashemi,et al.  Thin Film a-Si/c-Si1-xGex/c-Si Heterojunction Solar Cells: Design and Material Quality Requirements , 2011, ECS Transactions.

[34]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[35]  G. Patriarche,et al.  Fine-tuning of the interface in high-quality epitaxial silicon films deposited by plasma-enhanced chemical vapor deposition at 200 °C , 2013 .

[36]  Yu-Hung Chen,et al.  Enhancing performance of amorphous SiGe single junction solar cells by post-deposition thermal annealing , 2013 .

[37]  Jozef Poortmans,et al.  Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography , 2012 .

[38]  P. Hashemi,et al.  Thin film a-Si/c-Si1−xGex/c-Si heterojunction solar cells with Ge content up to 56% , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[39]  Steven A. Ringel,et al.  Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers , 2002 .

[40]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[41]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[42]  J. P. M. Schmitt,et al.  A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition , 1991 .

[43]  G. Patriarche,et al.  Directional growth of Ge on GaAs at 175°C using plasma-generated nanocrystals , 2008 .