SummaryA compact fourth order accurate finite difference scheme is proposed for solving the eigenvalue problem of the temporal and spatial stability of three-dimensional compressible boundary layers. It is applied to the stability study of the flow on a laminar flow control swept wing. The results indicate that the present method provides an accurate and efficient way of calculating the eigenvalues and eigensolutions of the compressible linear stability equations.ZusammenfassungEin kompaktes Differenzenschema vierter Ordnung wird vorgeschlagen zur Lösung von Eigenwertproblemen der zeitlichen und räumlichen Stabilität dreidimensionaler zusammendrückbarer Grenzschichten. Es wird zum Stabilitätsstudium der Strömung über einen LFC Flügel angewendet. Die Resultate zeigen, daß es die angewendete Methode erlaubt, genau und effizient die Eigenwerte und Eigenfunktionen der kompressiblen linearen Stabilitätsgleichungen zu berechnen.
[1]
Andrew Benjamin White.
Numerical solution of two-point boundary-value problems
,
1974
.
[2]
Steven A. Orszag,et al.
Comparison of methods for prediction of transition by stability analysis
,
1980
.
[3]
L. Mack,et al.
Computation of the stability of the laminar compressible boundary layer.
,
1965
.
[4]
H. Keller.
Accurate Difference Methods for Nonlinear Two-Point Boundary Value Problems
,
1974
.
[5]
On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation]
,
1976
.
[6]
M. Monkewitz.
Analytic pseudoorthogonalization methods for linear two-point boundary value problems illustrated by the Orr-Sommerfeld equation
,
1978
.
[7]
P. Bradshaw,et al.
Momentum transfer in boundary layers
,
1977
.
[8]
Ali H. Nayfeh,et al.
Stability of three-dimensional boundary layers
,
1979
.