Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control

Hysteresis in piezoceramic materials causes considerable complications in the use of piezo actuators in applications, such as vibration control. In this study, the classical Preisach model is used to characterize the hysteresis in a piezostack actuator used to move a trailing-edge flap for helicopter vibration control. The hysteresis in the actuator is primarily due to material nonlinearity and to a lesser extent due to losses in the amplification mechanism. Most helicopter vibration control studies ignore the effect of the hysteresis on the actuator performance. The desired motion of the flap for maximum reduction in vibration is determined using an aeroelastic analysis of the helicopter. Numerical results indicate that complete compensation of actuator hysteresis can result in up to 90% reduction in helicopter vibrations. The performance of the vibration control system deteriorates considerably when the actuator is represented by a linear model or when the compensator is based only on the primary material hysteresis of the actuator. Complete compensation of both material and mechanical hysteresis in the actuator is therefore critical to the performance of the trailing-edge flap vibration control system in a helicopter.

[1]  Friedrich K. Straub,et al.  Rotors with Trailing Edge Flaps: Analysis and Comparison with Experimental Data , 1998 .

[2]  Inderjit Chopra,et al.  Rotor Loads Prediction Utilizing a Coupled Aeroelastic Analysis with Refined Aerodynamic Modeling , 1991 .

[3]  Ranjan Ganguli,et al.  An optimization approach to vibration reduction in helicopter rotors with multiple active trailing edge flaps , 2004 .

[4]  Victor Giurgiutiu,et al.  Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control , 2000 .

[5]  John T. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .

[6]  Inderjit Chopra,et al.  Wind Tunnel Testing of a Smart Rotor Model with Trailing-Edge Flaps , 2002 .

[7]  Xiaobo Tan,et al.  Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Robert C. Rogers,et al.  Control of a hysteretic actuator using inverse hysteresis compensation , 1998, Smart Structures.

[9]  I. Mayergoyz,et al.  On numerical implementation of hysteresis models , 1985 .

[10]  Ralph C. Smith,et al.  A Domain Wall Model for Hysteresis in Piezoelectric Materials , 1999 .

[11]  Wei Chen,et al.  A Model for Simulating Polarization Switching and AF-F Phase Changes in Ferroelectric Ceramics , 1998 .

[12]  Jing Li,et al.  NONLINEAR CONTROL METHODOLOGIES FOR HYSTERESIS IN PZT ACTUATED ON-BLADE ELEVONS , 2003 .

[13]  I. Chopra,et al.  Design of piezostack-driven trailing-edge flap actuator for helicopter rotors , 2001 .

[14]  Nagi G. Naganathan,et al.  Preisach modeling of hysteresis for piezoceramic actuator system , 2002 .

[15]  Steven R. Hall,et al.  Preliminary testing of a Mach-scaled active rotor blade with a trailing-edge servo flap , 1999, Smart Structures.

[16]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[17]  Wayne Johnson,et al.  Self-Tuning Regulators for Multicyclic Control of Helicopter Vibration , 1982 .

[18]  Yoshihiro Ishibashi,et al.  A Model of Polarization Reversal in Ferroelectrics , 1990 .

[19]  C. Visone,et al.  Magnetic hysteresis modeling via feed-forward neural networks , 1998 .

[20]  Inderjit Chopra,et al.  Hover Testing of Active Rotor Blade-Tips Using a Piezo-Induced Bending-Torsion Coupled Beam , 1998 .

[21]  Yonghong Tan,et al.  Modeling hysteresis using hybrid method of continuous transformation and neural networks , 2005 .

[22]  Yonghong Tan,et al.  Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator , 2006 .

[23]  Robert A. Ormiston,et al.  Hover Testing of a Small-Scale Rotor with On-Blade Elevons , 2001 .

[24]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[25]  R. Ben Mrad,et al.  A discrete-time compensation algorithm for hysteresis in piezoceramic actuators , 2004 .

[26]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[27]  Thomas J. Royston,et al.  Piezoceramic Hysteresis in the Adaptive Structural Vibration Control Problem , 2000, Adaptive Structures and Material Systems.

[28]  Ranjan Ganguli,et al.  Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor , 2006 .

[29]  Jianhua Zhang,et al.  Active-Passive Hybrid Optimization of Rotor Blades With Trailing Edge Flaps , 2000 .

[30]  T. Royston,et al.  Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control , 1999, Adaptive Structures and Material Systems.

[31]  Inderjit Chopra,et al.  Comparison of Calculated Vibratory Rotor Hub Loads with Experimental Data , 1998 .

[32]  Robert C. Rogers,et al.  Compensation for hysteresis using bivariate Preisach models , 1997, Smart Structures.

[33]  H. F. Tiersten,et al.  An Analytical Description of Slow Hysteresis in Polarized Ferroelectric Ceramic Actuators , 1998 .

[34]  Li Chuntao,et al.  A neural networks model for hysteresis nonlinearity , 2004 .

[35]  Ranjan Ganguli,et al.  Helicopter vibration reduction in forward flight with induced-shear based piezoceramic actuation , 2004 .