IFFTc Based Procedure for Hidden Tone Detections

In this paper a procedure for the detection of hidden tones in the spectrum of a signal is proposed and experimentally evaluated. It is based on the IFFTc algorithm ("corrected interpolated FFT") for the estimation of spectral parameters of non-hidden tones, and on the analysis of the disagreement between measured and expected spectra in order to detect hidden tones. The design of the procedure takes advantage of experimental design techniques in the threshold evaluation

[1]  Duane S. Boning,et al.  DOE/Opt: a system for design of experiments, response surface modeling, and optimization using process and device simulation , 1994 .

[2]  Dusan Agrez,et al.  Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal , 2002, IEEE Trans. Instrum. Meas..

[3]  J. Schoukens,et al.  The interpolated fast Fourier transform: a comparative study , 1991 .

[4]  Alfredo Paolillo,et al.  Implementing uncertainty auto-evaluation capabilities on an intelligent FFT analyzer , 2004, IEEE Transactions on Instrumentation and Measurement.

[5]  D. Petri,et al.  The influence of windowing on the accuracy of multifrequency signal parameter estimation , 1992 .

[6]  Consolatina Liguori,et al.  UNCERTAINTY ON SIGNAL PARAMETER ESTIMATION IN FREQUENCY DOMAIN , 2001 .

[7]  Alfredo Paolillo,et al.  Estimation of signal parameters in frequency domain in presence of harmonic interference: a comparative analysis , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[8]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[9]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[10]  Alfredo Paolillo,et al.  An intelligent FFT analyzer with harmonic interference effect correction and uncertainty evaluation , 2004, IEEE Transactions on Instrumentation and Measurement.

[11]  G. Andria,et al.  Windows and interpolation algorithms to improve electrical measurement accuracy , 1989 .

[12]  Ignacio Santamaria,et al.  A COMPARATIVE STUDY OF HIGH-ACCURACY FREQUENCY ESTIMATION METHODS , 2000 .

[13]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[14]  M. Zivanovic,et al.  Extending the limits of resolution for narrow-band harmonic and modal analysis: a non-parametric approach , 2002 .

[15]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[16]  C. Liguori,et al.  Propagation of uncertainty in a discrete Fourier transform algorithm , 2000 .

[17]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[18]  Peter T. Gough,et al.  A fast spectral estimation algorithm based on the FFT , 1994, IEEE Trans. Signal Process..