IFFTc Based Procedure for Hidden Tone Detections
暂无分享,去创建一个
[1] Duane S. Boning,et al. DOE/Opt: a system for design of experiments, response surface modeling, and optimization using process and device simulation , 1994 .
[2] Dusan Agrez,et al. Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal , 2002, IEEE Trans. Instrum. Meas..
[3] J. Schoukens,et al. The interpolated fast Fourier transform: a comparative study , 1991 .
[4] Alfredo Paolillo,et al. Implementing uncertainty auto-evaluation capabilities on an intelligent FFT analyzer , 2004, IEEE Transactions on Instrumentation and Measurement.
[5] D. Petri,et al. The influence of windowing on the accuracy of multifrequency signal parameter estimation , 1992 .
[6] Consolatina Liguori,et al. UNCERTAINTY ON SIGNAL PARAMETER ESTIMATION IN FREQUENCY DOMAIN , 2001 .
[7] Alfredo Paolillo,et al. Estimation of signal parameters in frequency domain in presence of harmonic interference: a comparative analysis , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).
[8] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[9] S. Standard. GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .
[10] Alfredo Paolillo,et al. An intelligent FFT analyzer with harmonic interference effect correction and uncertainty evaluation , 2004, IEEE Transactions on Instrumentation and Measurement.
[11] G. Andria,et al. Windows and interpolation algorithms to improve electrical measurement accuracy , 1989 .
[12] Ignacio Santamaria,et al. A COMPARATIVE STUDY OF HIGH-ACCURACY FREQUENCY ESTIMATION METHODS , 2000 .
[13] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[14] M. Zivanovic,et al. Extending the limits of resolution for narrow-band harmonic and modal analysis: a non-parametric approach , 2002 .
[15] R. Iman,et al. A distribution-free approach to inducing rank correlation among input variables , 1982 .
[16] C. Liguori,et al. Propagation of uncertainty in a discrete Fourier transform algorithm , 2000 .
[17] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[18] Peter T. Gough,et al. A fast spectral estimation algorithm based on the FFT , 1994, IEEE Trans. Signal Process..