Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries

Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented.

[1]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[2]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[3]  Yan Xu,et al.  Liquid‐Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution , 2017, Advanced materials.

[4]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[5]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[6]  Yong‐Sheng Hu,et al.  Novel Concentrated Li[(FSO2)(n-C4F9SO2)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. , 2017, ACS applied materials & interfaces.

[7]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[8]  Ya‐Xia Yin,et al.  Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping , 2016, Advanced science.

[9]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[10]  W. Liu,et al.  Extending the Life of Lithium‐Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator , 2017, Advanced materials.

[11]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[12]  Ya‐Xia Yin,et al.  Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. , 2016, Journal of the American Chemical Society.

[13]  Dingchang Lin,et al.  Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. , 2016, ACS nano.

[14]  Sen Xin,et al.  Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries , 2016, Advanced materials.

[15]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[16]  Kevin N. Wood,et al.  Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy , 2016, ACS central science.

[17]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[18]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[19]  Liyi Shi,et al.  Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators , 2016 .

[20]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[21]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7La3Zr2O12‐Polyethylene Oxide Composite Electrolytes , 2016 .

[22]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[23]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[24]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[25]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[26]  Chongwu Zhou,et al.  A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life , 2016, Nano Research.

[27]  Marnix Wagemaker,et al.  Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. , 2016, Journal of the American Chemical Society.

[28]  Yayuan Liu,et al.  All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. , 2016, Journal of the American Chemical Society.

[29]  Yutao Li,et al.  Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[30]  Hongkyung Lee,et al.  Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries , 2016, Scientific Reports.

[31]  Shengqi Zhang A new finding on the role of LiNO3 in lithium-sulfur battery , 2016 .

[32]  R. Zengerle,et al.  Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. , 2016, ACS nano.

[33]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[34]  X. Duan,et al.  Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. , 2016, Journal of the American Chemical Society.

[35]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[36]  H. Le,et al.  Insights into degradation of metallic lithium electrodes protected by a bilayer solid electrolyte based on aluminium substituted lithium lanthanum titanate in lithium-air batteries , 2016 .

[37]  S. Dai,et al.  Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. , 2016, Small.

[38]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[39]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[40]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[41]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[42]  Jingze Li,et al.  Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery. , 2016, ACS applied materials & interfaces.

[43]  Myung-Hyun Ryou,et al.  Micro‐Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium‐Ion Batteries , 2016 .

[44]  Changhong Liu,et al.  The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. , 2016, Nanoscale.

[45]  Eunkyoung Kim,et al.  Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders. , 2016, ACS applied materials & interfaces.

[46]  Jian Zhu,et al.  Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. , 2016, Nano letters.

[47]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[48]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[49]  Samuel S. Cartmell,et al.  Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High‐Concentration Electrolyte Layer , 2016 .

[50]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[51]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[52]  Fernando A. Soto,et al.  Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces , 2016, 1605.07142.

[53]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[54]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[55]  N. Togasaki,et al.  Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery , 2016 .

[56]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[57]  Seung M. Oh,et al.  Solution‐Processable Glass LiI‐Li4SnS4 Superionic Conductors for All‐Solid‐State Li‐Ion Batteries , 2016, Advanced materials.

[58]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[59]  A. Dolocan,et al.  Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries , 2016 .

[60]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[61]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[62]  Jiulin Wang,et al.  A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries , 2016, Scientific Reports.

[63]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[64]  Jing Wang,et al.  Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. , 2016, Nano letters.

[65]  Deyu Wang,et al.  Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes , 2016 .

[66]  S. Choudhury,et al.  Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities , 2016 .

[67]  Jun Liu,et al.  In situ 7 Li and 133 Cs nuclear magnetic resonance investigations on the role of Cs + additive in lithium-metal deposition process , 2016 .

[68]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[69]  Zachary D. Hood,et al.  Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes. , 2016, Journal of the American Chemical Society.

[70]  F. Bella,et al.  Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries , 2016, Scientific Reports.

[71]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[72]  Moon Jeong Park,et al.  Building Less Tortuous Ion-Conduction Pathways Using Block Copolymer Electrolytes with a Well-Defined Cubic Symmetry , 2016 .

[73]  Seung M. Oh,et al.  Poly(arylene ether)-Based Single-Ion Conductors for Lithium-Ion Batteries , 2016 .

[74]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[75]  J. Muldoon,et al.  A soft, multilayered lithium–electrolyte interface , 2016 .

[76]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[77]  Xingguo Qi,et al.  Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries , 2016 .

[78]  J. Eckert,et al.  Role of 1,3-Dioxolane and LiNO3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries , 2016 .

[79]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[80]  G. Veith,et al.  Polymerized Ionic Networks with High Charge Density: Quasi‐Solid Electrolytes in Lithium‐Metal Batteries , 2015, Advanced materials.

[81]  Alexej Jerschow,et al.  Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ⁷Li MRI. , 2015, Journal of the American Chemical Society.

[82]  Young Jin Nam,et al.  Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk‐Type All‐Solid‐State Lithium‐Ion Batteries , 2015 .

[83]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[84]  M. Nisula,et al.  Atomic Layer Deposition of Lithium Phosphorus Oxynitride , 2015 .

[85]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[86]  P. Bottke,et al.  Ion Dynamics in Solid Electrolytes: NMR Reveals the Elementary Steps of Li+ Hopping in the Garnet Li6.5La3Zr1.75Mo0.25O12 , 2015 .

[87]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[88]  Young‐Jun Kim,et al.  Conductive porous carbon film as a lithium metal storage medium , 2015 .

[89]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries , 2015, Advanced materials.

[90]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[91]  Hui Zhao,et al.  Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries. , 2015, ACS applied materials & interfaces.

[92]  Kun Fu,et al.  A Thermally Conductive Separator for Stable Li Metal Anodes. , 2015, Nano letters.

[93]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[94]  Yifu Yang,et al.  Substrate effects on Li(+) electrodeposition in Li secondary batteries with a competitive kinetics model. , 2015, Physical chemistry chemical physics : PCCP.

[95]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[96]  C. Elsässer,et al.  Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study , 2015 .

[97]  A. Manthiram,et al.  Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte , 2015 .

[98]  Winfried W. Wilcke,et al.  Flexible Ion‐Conducting Composite Membranes for Lithium Batteries , 2015 .

[99]  Ji‐Guang Zhang,et al.  Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive , 2015 .

[100]  D. Gigmes,et al.  Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries , 2015 .

[101]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[102]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[103]  Rui Zhang,et al.  Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. , 2015, ACS nano.

[104]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[105]  Zhengyuan Tu,et al.  A Dendrite-Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and High-Energy Electrodes. , 2015, Small.

[106]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[107]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[108]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[109]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[110]  J. Goodenough,et al.  Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. , 2015, Nano letters.

[111]  Jin Hong Lee,et al.  Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[112]  Hubert A. Gasteiger,et al.  Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling , 2015 .

[113]  K. Zaghib,et al.  Lithium battery with solid polymer electrolyte based on comb-like copolymers , 2015 .

[114]  Zhengyuan Tu,et al.  Stable lithium electrodeposition in salt-reinforced electrolytes , 2015 .

[115]  J. Sullivan,et al.  Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. , 2015, ACS nano.

[116]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[117]  S. Koch,et al.  Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. , 2015, ACS applied materials & interfaces.

[118]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[119]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[120]  K. Nishio,et al.  Epitaxy of Li3xLa2/3–xTiO3 Films and the Influence of La Ordering on Li-Ion Conduction , 2015 .

[121]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[122]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[123]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[124]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[125]  Bruno Scrosati,et al.  The Lithium/Air Battery: Still an Emerging System or a Practical Reality? , 2015, Advanced materials.

[126]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[127]  Li Liu,et al.  A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries , 2015 .

[128]  M. Winter,et al.  Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries , 2015 .

[129]  S. Hirano,et al.  Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries , 2015 .

[130]  Jiulin Wang,et al.  Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility , 2014 .

[131]  Li Liu,et al.  One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries , 2014 .

[132]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[133]  Zhiqiang Zhu,et al.  All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. , 2014, Journal of the American Chemical Society.

[134]  Hong‐Jie Peng,et al.  Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. , 2014, Small.

[135]  G. R. Li,et al.  A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. , 2014, Chemical communications.

[136]  Guoqiang Ma,et al.  A lithium anode protection guided highly-stable lithium-sulfur battery. , 2014, Chemical communications.

[137]  Hui Wu,et al.  Improving battery safety by early detection of internal shorting with a bifunctional separator , 2014, Nature Communications.

[138]  Qinglin Wu,et al.  Heterolayered, one-dimensional nanobuilding block mat batteries. , 2014, Nano letters.

[139]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[140]  Jun Lu,et al.  An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. , 2014, ACS applied materials & interfaces.

[141]  D. Abraham,et al.  Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry , 2014 .

[142]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[143]  Weikun Wang,et al.  Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery , 2014 .

[144]  Jeong-Hoon Kim,et al.  Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems. , 2014, Nano letters.

[145]  Winfried W. Wilcke,et al.  Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator , 2014 .

[146]  S. Hirano,et al.  Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery , 2014 .

[147]  N. Balsara,et al.  Morphology-Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries. , 2014, ACS macro letters.

[148]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[149]  Khalil Amine,et al.  Rechargeable lithium batteries and beyond: Progress, challenges, and future directions , 2014 .

[150]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[151]  N. Koratkar,et al.  Defect-induced plating of lithium metal within porous graphene networks , 2014, Nature Communications.

[152]  C. Liang,et al.  Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .

[153]  M. Winter,et al.  Coated Lithium Powder (CLiP) Electrodes for Lithium‐Metal Batteries , 2014 .

[154]  H. Xin,et al.  Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. , 2014, Nano letters.

[155]  Yuyan Shao,et al.  Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism , 2014 .

[156]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[157]  Dongmin Im,et al.  A Highly Reversible Lithium Metal Anode , 2014, Scientific Reports.

[158]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[159]  T. Lodge,et al.  High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. , 2014, Nano letters.

[160]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[161]  Johanna K. Goodman,et al.  Effect of Alkali and Alkaline Earth Metal Salts on Suppression of Lithium Dendrites , 2014 .

[162]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[163]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[164]  Yang‐Kook Sun,et al.  Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode , 2013 .

[165]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[166]  W. Zhong,et al.  A Gum‐Like Electrolyte: Safety of a Solid, Performance of a Liquid , 2013 .

[167]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[168]  Hao Li,et al.  Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. , 2013, Angewandte Chemie.

[169]  Z. Wen,et al.  Effects of combinatorial AlCl3 and pyrrole on the SEI formation and electrochemical performance of Li electrode , 2013 .

[170]  Haoshen Zhou,et al.  The pursuit of rechargeable solid-state Li–air batteries , 2013 .

[171]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[172]  Thomas Hanemann,et al.  Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy , 2013 .

[173]  Keun-Ho Choi,et al.  Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries , 2013 .

[174]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[175]  Rudolf Holze,et al.  An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode , 2013, Scientific Reports.

[176]  Dong‐Won Kim,et al.  Cycling Characteristics of Lithium Powder Polymer Batteries Assembled with Composite Gel Polymer Electrolytes and Lithium Powder Anode , 2013 .

[177]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[178]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[179]  P. Kohl,et al.  Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium , 2013 .

[180]  Haoshen Zhou,et al.  Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode , 2012 .

[181]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[182]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[183]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[184]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[185]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[186]  G. Stucky,et al.  Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition , 2012 .

[187]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[188]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[189]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[190]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[191]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[192]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[193]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[194]  B. Dunn,et al.  Protection of lithium metal surfaces using tetraethoxysilane , 2011 .

[195]  Hirokazu Kitaura,et al.  Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes , 2011 .

[196]  R. Compton,et al.  The electrode potentials of the Group I alkali metals in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide , 2010 .

[197]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[198]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[199]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive , 2008 .

[200]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[201]  H. Sohn,et al.  Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte , 2008 .

[202]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[203]  P. Kohl,et al.  Dentrite-Free Electrochemical Deposition of Li–Na Alloys from an Ionic Liquid Electrolyte , 2006 .

[204]  O. Efimov,et al.  Lithium surface protection by polyacetylene in situ polymerization , 2006 .

[205]  D. Macfarlane,et al.  The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium‐Metal Batteries , 2005 .

[206]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[207]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[208]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[209]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[210]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[211]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[212]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[213]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[214]  N. Dudney Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte , 2000 .

[215]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[216]  Y. Matsuda,et al.  Effect of organic additives in electrolyte solutions on lithium electrode behavior , 1999 .

[217]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[218]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[219]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[220]  M. Ishikawa,et al.  In situ scanning vibrating electrode technique for lithium metal anodes , 1997 .

[221]  K. Kanamura,et al.  Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF , 1996 .

[222]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes , 1995 .

[223]  Bruno Scrosati,et al.  Composite Polymer Electrolytes , 1991 .

[224]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[225]  Dougherty,et al.  Dendritic and fractal patterns in electrolytic metal deposits. , 1986, Physical review letters.

[226]  S. Skaarup,et al.  Ionic conductivity of pure and doped Li3N , 1983 .

[227]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[228]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[229]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[230]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.