Experimental quantum teleportation over a high-loss free-space channel.

We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.

[1]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[2]  B. Yurke,et al.  Bell's-inequality experiments using independent-particle sources. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[5]  Popescu,et al.  Bell's inequalities versus teleportation: What is nonlocality? , 1994, Physical review letters.

[6]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[7]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[8]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[9]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[10]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[11]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[12]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[13]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[14]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[15]  N. Lütkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2001 .

[16]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[17]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[18]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[19]  P R Tapster,et al.  erratum , 2002, Nature.

[20]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[21]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[22]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[23]  A. Zeilinger,et al.  Long-Distance Free-Space Distribution of Quantum Entanglement , 2003, Science.

[24]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[25]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[26]  H. Weinfurter,et al.  Distributing entanglement and single photons through an intra-city, free-space quantum channel , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[27]  Jian-Wei Pan,et al.  Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. , 2005, Physical review letters.

[28]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[29]  Christoph Simon,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[32]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[33]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[34]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[35]  Rupert Ursin,et al.  High-fidelity transmission of entanglement over a high-loss free-space channel , 2009, 0902.2015.

[36]  M. Stipčević,et al.  Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range. , 2010, Optics express.

[37]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[38]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[39]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[40]  Yoon-Ho Kim,et al.  Ultra-low noise single-photon detector based on Si avalanche photodiode. , 2011, The Review of scientific instruments.