Algebraic Properties and Conservation Laws in the Discrete Electromagnetism

The Rnite Integration Theory (FIT) is a discretization scheme for Maxwell's equations in their integral form and is the basis of a discrete electromagnetic field theory. The resulting matrix equations of the discretized fields can be used for efficient numerical simulations on modem computers. In addition, the basic algebraic properties of this discrete electromagnetic field theory allow to analytically and algebraically prove conservation properties with respect to energy and charge of the discrete formulation and give an explanation of the stability properties of numerical time domain formulations. Für die Dokumentation Maxwellsche Gleichungen / Computersimulation elektromagnetischer Felder / Theorie der Finiten Integration / Diskretisationsmethode Frequenz 53(1999) 11-12

[1]  Thomas Weiland,et al.  Numerical stability of finite difference time domain methods , 1998 .

[2]  Rolf Schuhmann,et al.  The Perfect Boundary Approximation Technique Facing the Big Challenge of High Precision Field Computation , 1998 .

[3]  Rolf Schuhmann,et al.  A stable interpolation technique for FDTD on non-orthogonal grids , 1998 .

[4]  W. L. Wood A unified set of single step algorithms. Part 4: Backward error analysis applied to the solution of the dynamic vibration equation , 1986 .

[5]  Thomas Weiland,et al.  Lossy Waveguides with an Arbitrary Boundary Contour and Distribution of Material , 1979 .

[6]  Markus Clemens,et al.  Time-Integration of Slowly Varying Electromagnetic Field Problems Using the Finite Integration Technique , 1997 .

[7]  Enzo Tonti,et al.  On the Geometrical Structure of Electromagnetism , 1999 .

[8]  T. Weiland,et al.  FIT-Formulation for Gyrotropic Media , 1999 .

[9]  Rolf Schuhmann,et al.  FDTD on nonorthogonal grids with triangular fillings , 1999 .

[10]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[11]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[12]  Thomas Weiland,et al.  Transient eddy-current calculation with the FI-method , 1999 .

[13]  Stefan Gutschling,et al.  Zeitbereichsverfahren zur Simulation elektromagnetischer Felder in dispersiven Materialien , 1998 .

[14]  Thomas Weiland,et al.  A CONSISTENT SUBGRIDDING SCHEME FOR THE FINITE DIFFERENCE TIME DOMAIN METHOD , 1996 .

[15]  M. Clemens,et al.  Numerical algorithms for the FDiTD and FDFD simulation of slowly varying electromagnetic fields , 1999 .

[16]  Peter Monk,et al.  A mixed method for approximating Maxwell's equations , 1991 .

[17]  L. Kettunen,et al.  Yee‐like schemes on a tetrahedral mesh, with diagonal lumping , 1999 .

[18]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[19]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[20]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[21]  Thomas Weiland,et al.  On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .