An Integrated Approach to Regression Analysis in Multiple Correspondence Analysis and Copula Based Models

In this paper, taking into account the possible development of serious disorders of the proliferation of the plasmatic cells, we focus on a dataset concerning the prediction among a chronic disease which has the higher risk of malignant transformation. The purpose of this paper is to argue in favour of the use of multiple correspondence analysis (MCA) as a powerful exploratory tool for such data. Following usual regression terminology, we refer to the primary variable as the response variable and the others as explanatory or predictive variables. As an alternative, a copula based methodology for prediction modeling and an algorithm to stimulate data are proposed.

[1]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[2]  B. L. Roux,et al.  Geometric Data Analysis: From Correspondence Analysis to Structured Data Analysis , 2004 .

[3]  R A Kyle,et al.  "Benign" monoclonal gammopathy--after 20 to 35 years of follow-up. , 1993, Mayo Clinic proceedings.

[4]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[5]  Kenneth C. Anderson,et al.  Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group , 2003, British journal of haematology.

[6]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[7]  Fionn Murtagh,et al.  Correspondence Analysis and Data Coding with Java and R , 2005 .

[8]  Michael Greenacre,et al.  Book reviews: Correspondence analysis and data coding with Java and R. Fionn Murtagh. Chapman & Hall/CRC, 2005. Multidimensional nonlinear data analysis. Shizuhiko Nishiato. Chapman & Hall/CRC, 2006. , 2006 .

[9]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[10]  R. Plackett A Class of Bivariate Distributions , 1965 .

[11]  F. J. Gallego,et al.  Codage flou en analyse des correspondances , 1982 .

[12]  P.G.M. Van der Heijden,et al.  A Combined Approach to Contingency Table Analysis Using Correspondence Analysis and Log-Linear Analysis , 1989 .

[13]  Adaptation de la régression PLS au cas de la régression après analyse des correspondances multiples , 1997 .

[14]  P. Duncombe,et al.  Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices , 1985 .

[15]  Hemantha S. B. Herath,et al.  New Research Directions in Engineering Economics—Modeling Dependencies with Copulas , 2007 .

[16]  Pranesh Kumar Statistical Dependence: Copula Functions and Mutual Information Based Measures , 2012 .

[17]  P. Cazes Codage d'une variable continue en vue de l'analyse des correspondances , 1990 .

[18]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[19]  Pranesh Kumar,et al.  Copulas: Distribution Functions and Simulation , 2011, International Encyclopedia of Statistical Science.

[20]  Pranesh Kumar Probability Distributions and Estimation of Ali-Mikhail-Haq Copula , 2010 .

[21]  M. Greenacre Correspondence analysis in practice , 1993 .