Second‐order entropy diminishing scheme for the Euler equations
暂无分享,去创建一个
Frédéric Coquel | Philippe Helluy | P. Helluy | F. Coquel | Jacques Schneider | J. Schneider | Philippe Helluy | Jacques Schneider
[1] P. Raviart,et al. An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .
[2] François Bouchut,et al. A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..
[3] Philippe G. LeFloch,et al. An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .
[4] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[5] C. Schwab,et al. A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .
[6] R. LeVeque. Approximate Riemann Solvers , 1992 .
[7] S. M. Deshpande,et al. Kinetic theory based new upwind methods for inviscid compressible flows , 1986 .
[8] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[9] S. Osher,et al. One-sided difference approximations for nonlinear conservation laws , 1981 .
[10] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[11] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[12] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[13] Jean-Pierre Croisille,et al. Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces , 1990 .
[14] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[15] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[16] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[17] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[18] Jean-Pierre Croisille,et al. On the approximation of K-diagonalizable hyperbolic systems by finite elements - Applications to the Euler equations and to gaseous mixtures , 1989 .
[19] F. Bouchut. Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .
[20] B. Perthame,et al. Boltzmann type schemes for gas dynamics and the entropy property , 1990 .
[21] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[22] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[23] Jeffrey Rauch,et al. BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one , 1986 .
[24] A. Harten. ENO schemes with subcell resolution , 1989 .
[25] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[26] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[27] J. Falcovitz,et al. An upwind second-order scheme for compressible duct flows , 1986 .