Second‐order entropy diminishing scheme for the Euler equations

In several papers of Bouchut, Bourdarias, Perthame and Coquel, Le Floch ((13), (7)...), a general methodology has been developed to construct second order flnite volume schemes for hyperbolic systems of conservation laws satisfying the entire family of entropy inequalities. This approach is mainly based on the construction of an entropy diminishing projection. Unfor- tunately, the explicit computation of this projection is not always easy. In the flrst part of this paper, we carry out this computation in the important case of the Euler equations of gas dynamics. In the second part, we present several numerical applications of the projection in the context of flnite volume schemes.

[1]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[2]  François Bouchut,et al.  A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..

[3]  Philippe G. LeFloch,et al.  An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .

[4]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[5]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[6]  R. LeVeque Approximate Riemann Solvers , 1992 .

[7]  S. M. Deshpande,et al.  Kinetic theory based new upwind methods for inviscid compressible flows , 1986 .

[8]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[9]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[10]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[11]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[12]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[13]  Jean-Pierre Croisille,et al.  Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces , 1990 .

[14]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[15]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[16]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[17]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[18]  Jean-Pierre Croisille,et al.  On the approximation of K-diagonalizable hyperbolic systems by finite elements - Applications to the Euler equations and to gaseous mixtures , 1989 .

[19]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[20]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[21]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[22]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[23]  Jeffrey Rauch,et al.  BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one , 1986 .

[24]  A. Harten ENO schemes with subcell resolution , 1989 .

[25]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[26]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[27]  J. Falcovitz,et al.  An upwind second-order scheme for compressible duct flows , 1986 .