Ab initio study on the stability of Ng(n)Be₂N₂, Ng(n)Be₃N₂ and NgBeSiN₂ clusters.

The global minima of Be2N2, Be3N2 and BeSiN2 clusters are identified using a modified stochastic kick methodology. The structure, stability and bonding nature of these clusters bound to noble gas (Ng) atoms are studied at the MP2/def2-QZVPPD level of theory. Positive Be-Ng bond dissociation energy, which gradually increases down Group 18 from He to Rn, indicates the bound nature of Ng atoms. All of the Ng-binding processes are exothermic in nature. The Xe and Rn binding to Be2N2 and Be3N2 clusters and Ar-Rn binding to BeSiN2 are exergonic processes at room temperature; however, for the lighter Ng atoms, lower temperatures are needed. Natural population analysis, Wiberg bond index computations, electron density analysis, and energy decomposition analysis are performed to better understand the nature of Be-Ng bonds.

[1]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[2]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[3]  S. Borocci,et al.  SBeNg, SBNg+, and SCNg2+ complexes (Ng=He, Ne, Ar): a computational investigation on the structure and stability , 2004 .

[4]  F. Grandinetti Neon behind the signs. , 2013, Nature chemistry.

[5]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[6]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[7]  Hans Martin Senn,et al.  Metal-metal and metal-ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO)10. , 2010, The journal of physical chemistry. A.

[8]  Wojciech Grochala,et al.  On Chemical Bonding Between Helium and Oxygen , 2009 .

[9]  H. Jacobs,et al.  Ammonothermal Synthesis of Magnesium and Beryllium Amides , 1966 .

[10]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[11]  Lester Andrews,et al.  Noble Gas Complexes with BeO: Infrared Spectra of NG-BeO (NG = Ar, Kr, Xe) , 1994 .

[12]  K. Christe Bartlett's discovery of noble gas fluorides, a milestone in chemical history. , 2013, Chemical communications.

[13]  W. Schnick,et al.  A density functional study of the high-pressure chemistry of MSiN2(M = Be, Mg, Ca): prediction of high-pressure phases and examination of pressure-induced decomposition , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  M. Somer,et al.  Ae[Be2N2]: nitridoberyllates of the heavier alkaline-earth metals. , 2004, Angewandte Chemie.

[15]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[16]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[17]  Pratim K Chattaraj,et al.  In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. , 2014, The journal of physical chemistry. A.

[18]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[19]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[20]  Lester Andrews,et al.  Reactions of laser ablated Be atoms with O2: Infrared spectra of beryllium oxides in solid argon , 1994 .

[21]  W. Grochala Atypical compounds of gases, which have been called 'noble'. , 2007, Chemical Society reviews.

[22]  Dieter Cremer,et al.  Chemische Bindungen ohne Bindungselektronendichte -reicht die Differenzdichteanalyse zur Bindungsbeschreibung aus?† , 1984 .

[23]  M. Somer,et al.  Novel Barium Beryllates Ba[Be2N2] and Ba3[Be5O8]: Syntheses, Crystal Structures and Bonding Properties , 2005 .

[24]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[25]  Paola Antoniotti,et al.  Stable Compounds of the Lightest Noble Gases: A Computational Investigation of RNBeNg (Ng = He, Ne, Ar) , 2003 .

[26]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[27]  M. Xiao,et al.  Phase mixture and anti-reflection window in visible of annealed beryllium-nitride thin films on silicon crystal , 2012 .

[28]  M. Ziółkowski,et al.  Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses. , 2006, The journal of physical chemistry. A.

[29]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[30]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[31]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[32]  R. Benny Gerber,et al.  Lifetimes of compounds made of noble-gas atoms with water , 2009 .

[33]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[34]  T. Ghanty,et al.  Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. , 2007, The Journal of chemical physics.

[35]  T. Ghanty,et al.  Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe). , 2008, The Journal of chemical physics.

[36]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[37]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[38]  Vladimir I Feldman,et al.  Direct visualization of the H-Xe bond in xenon hydrides: xenon isotopic shift in the IR spectra. , 2009, The Journal of chemical physics.

[39]  Eric R. Scerri The Periodic Table: Its Story and Its Significance , 2006 .

[40]  T. Ghanty,et al.  Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, Cl, and Br]: an ab initio investigation. , 2006, The Journal of chemical physics.

[41]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[42]  R. Benny Gerber,et al.  Quantum Chemical Calculations on Novel Molecules from Xenon Insertion into Hydrocarbons , 2002 .

[43]  F. Bickelhaupt,et al.  Radon hydrides: structure and bonding. , 2011, Physical chemistry chemical physics : PCCP.

[44]  Electronic and structural properties of β-Be3N2 , 2002 .

[45]  R. Marchand,et al.  Binary nitrides α-M3N2(M = Be, Mg, Ca): a theoretical study , 2002 .

[46]  Piero Macchi,et al.  Charge Density in Transition Metal Clusters: Supported vs Unsupported Metal−Metal Interactions , 1999 .

[47]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[48]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[49]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[50]  Venkatesan Subramanian,et al.  Structure and stability of (NG)nCN3Be3(+) clusters and comparison with (NG)BeY(0/+). , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  L. Pauling The Formulas of Antimonic Acid and the Antimonates , 1933 .

[52]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[53]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[54]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[55]  Yanming Ma,et al.  Novel superhard polymorphs of Be3N2 predicted by first-principles , 2010 .

[56]  A. Petukhov,et al.  Electronic structure of wide-band-gap ternary pnictides with the chalcopyrite structure. , 1994, Physical review. B, Condensed matter.

[57]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[58]  L. Stein Removal of Xenon and Radon from Contaminated Atmospheres with Dioxygenyl Hexafluoroantimonate, O2SbF6 , 1973, Nature.

[59]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[60]  Miquel Solà,et al.  Polycyclic benzenoids: why kinked is more stable than straight. , 2007, The Journal of organic chemistry.

[61]  V. Borisenko,et al.  Structural, electronic and optical properties of II–IV–N2 compounds (II = Be, Zn; IV = Si, Ge) , 2008 .

[62]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[63]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[64]  H. Jacobs,et al.  Ammonothermalsynthese von Magnesium‐ und Berylliumamid , 1966 .

[65]  H. Gou,et al.  Cubic γ-Be3N2: A superhard semiconductor predicted from first principles , 2007 .

[66]  Stefano Borocci,et al.  From OBeHe to H3BOBeHe: Enhancing the stability of a neutral helium compound , 2005 .

[67]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[68]  Vladimir I. Feldman,et al.  Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix , 1996 .

[69]  Pratim K. Chattaraj,et al.  Attractive Xe-Li interaction in Li-decorated clusters , 2013 .

[70]  Pratim K Chattaraj,et al.  C5Li7(+) and O2Li5(+) as noble-gas-trapping agents. , 2013, Chemistry.

[71]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[72]  Philip Coppens,et al.  Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion and comparison with time-resolved X-ray and spectroscopic results. , 2003, Journal of the American Chemical Society.

[73]  P. Seal Is nucleus-independent chemical shift scan a reliable aromaticity index for planar and neutral A2B2 clusters? , 2009 .

[74]  Vladimir I. Feldman,et al.  Further evidence for formation of xenon dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results , 1997 .

[75]  Stefano Borocci,et al.  Neutral helium compounds: theoretical evidence for a large class of polynuclear complexes. , 2006, Chemistry.

[76]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[77]  Roald Hoffmann,et al.  Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F-) at large compression. , 2011, Inorganic chemistry.

[78]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[79]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[80]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .