Computational Depth and Reducibility

[1]  P. Kidwell,et al.  The universal turing machine: a half-century survey , 1996, IEEE Annals of the History of Computing.

[2]  C. Cole,et al.  The Universal Turing Machine: A Half-Century Survey , 1996, Inf. Process. Manag..

[3]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[4]  Ronald V. Book On Languages Reducible to Algorithmically Random Languages , 1994, SIAM J. Comput..

[5]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[6]  Ming Li,et al.  Learning Simple Concept Under Simple Distributions , 1991, SIAM J. Comput..

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  Ming Li,et al.  Kolmogorov Complexity and its Applications , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[9]  Jack H. Lutz,et al.  Almost everywhere high nonuniform complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[10]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[11]  M. W. Shields An Introduction to Automata Theory , 1988 .

[12]  F. Takens Measure and category , 1988 .

[13]  A. Kolmogorov,et al.  ALGORITHMS AND RANDOMNESS , 1988 .

[14]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[15]  R. Soare Recursively enumerable sets and degrees , 1987 .

[16]  Moshe Koppel,et al.  Complexity, Depth, and Sophistication , 1987, Complex Syst..

[17]  Péter Gács,et al.  Every Sequence Is Reducible to a Random One , 1986, Inf. Control..

[18]  Leonid A. Levin,et al.  Randomness Conservation Inequalities; Information and Independence in Mathematical Theories , 1984, Inf. Control..

[19]  P. Billingsley,et al.  Probability and Measure , 1980 .

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Leonid A. Levin,et al.  Invariant Properties of Informational Bulks , 1977, MFCS.

[22]  R. I. Freidzon Families of recursive predicates of measure zero , 1976 .

[23]  G. Chaitin A Theory of Program Size Formally Identical to Information Theory , 1975, JACM.

[24]  Kurt Mehlhorn The "Almost All" Theory of Subrecursive Degrees is Decidable , 1974, ICALP.

[25]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[26]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[27]  P. Martin-Löf Complexity oscillations in infinite binary sequences , 1971 .

[28]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[29]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[30]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[31]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.

[32]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.

[33]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[34]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[35]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[36]  Donald A. Martin,et al.  Classes of Recursively Enumerable Sets and Degrees of Unsolvability , 1966 .

[37]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[38]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[39]  G. S. Martin Dissipation , 1904, The American journal of dental science.