Constrained Multiobjective Optimization: Test Problem Construction and Performance Evaluations

[1]  Ricardo H. C. Takahashi,et al.  On the Performance Degradation of Dominance-Based Evolutionary Algorithms in Many-Objective Optimization , 2018, IEEE Transactions on Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[3]  Yong Wang,et al.  Indicator-Based Constrained Multiobjective Evolutionary Algorithms , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[4]  Yuren Zhou,et al.  An angle based constrained many-objective evolutionary algorithm , 2017, Applied Intelligence.

[5]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[6]  Hisao Ishibuchi,et al.  Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems , 2014, 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM).

[7]  Thomas Stützle,et al.  A Large-Scale Experimental Evaluation of High-Performing Multi- and Many-Objective Evolutionary Algorithms , 2018, Evolutionary Computation.

[8]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[9]  Yuren Zhou,et al.  A set of new multi- and many-objective test problems for continuous optimization and a comprehensive experimental evaluation , 2019, Artif. Intell..

[10]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[11]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[12]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[13]  Ming NIU,et al.  A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems , 2014 .

[14]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[15]  Carlos A. Coello Coello,et al.  Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization , 2015, GECCO.

[16]  Xin Yao,et al.  of Birmingham Quality evaluation of solution sets in multiobjective optimisation , 2019 .

[17]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[18]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[20]  David W. Corne,et al.  Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem , 2003, EMO.

[21]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[22]  Hisao Ishibuchi,et al.  Modified Distance Calculation in Generational Distance and Inverted Generational Distance , 2015, EMO.

[23]  Xin Yao,et al.  A benchmark test suite for evolutionary many-objective optimization , 2017, Complex & Intelligent Systems.

[24]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[25]  Yuren Zhou,et al.  Evolutionary Many-Objective Optimization Based on Dynamical Decomposition , 2019, IEEE Transactions on Evolutionary Computation.

[26]  Yong Wang,et al.  Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons , 2019, IEEE Transactions on Evolutionary Computation.

[27]  Akira Oyama,et al.  A note on constrained multi-objective optimization benchmark problems , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[28]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[29]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[30]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[31]  Hisao Ishibuchi,et al.  How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison , 2018, Evolutionary Computation.

[32]  Kiyoshi Tanaka,et al.  A Review of Features and Limitations of Existing Scalable Multiobjective Test Suites , 2019, IEEE Transactions on Evolutionary Computation.

[33]  Qingfu Zhang,et al.  Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit , 2016, Evolutionary Computation.

[34]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[35]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[36]  Steffen Rebennack,et al.  Optimal power flow: a bibliographic survey II , 2012, Energy Systems.

[37]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[38]  Oliver Schütze,et al.  A benchmark for equality constrained multi-objective optimization , 2020, Swarm Evol. Comput..

[39]  Yong Wang,et al.  Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces , 2019, IEEE Transactions on Evolutionary Computation.

[40]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[41]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[42]  Yuren Zhou,et al.  An Evolution Path-Based Reproduction Operator for Many-Objective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[43]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.