Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a

[1]  G. Besra,et al.  CD1a selectively captures endogenous cellular lipids that broadly block T cell response , 2021, The Journal of experimental medicine.

[2]  Chyung-Ru Wang,et al.  Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection , 2020, PLoS pathogens.

[3]  Daniel Osorio,et al.  Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA sequencing data quality control , 2020, bioRxiv.

[4]  P. Sims,et al.  Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease , 2019, Nature Communications.

[5]  C. Larminie,et al.  Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines , 2019, Nature Communications.

[6]  A. Peschel,et al.  MprF-mediated daptomycin resistance. , 2019, International journal of medical microbiology : IJMM.

[7]  Jay W. Shin,et al.  Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians , 2019, Proceedings of the National Academy of Sciences.

[8]  C. Marboe,et al.  Generation and persistence of human tissue-resident memory T cells in lung transplantation , 2019, Science Immunology.

[9]  S. Raychaudhuri,et al.  Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions , 2019, Nature Communications.

[10]  J. Altman,et al.  A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids , 2019, Nature Communications.

[11]  Bjoern Peters,et al.  Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis , 2018, Science Immunology.

[12]  Yasmine Belkaid,et al.  The human skin microbiome , 2018, Nature Reviews Microbiology.

[13]  Sebastian M. Kuhn,et al.  Bacterial aminoacyl phospholipids - Biosynthesis and role in basic cellular processes and pathogenicity. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[14]  J. Rossjohn,et al.  A molecular basis of human T cell receptor autoreactivity toward self-phospholipids , 2017, Science Immunology.

[15]  I. Dugail,et al.  Specific roles of phosphatidylglycerols in hosts and microbes. , 2017, Biochimie.

[16]  Andrea Califano,et al.  PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens , 2017, Nature Communications.

[17]  D. Farber,et al.  Dendritic Cells Display Subset and Tissue‐Specific Maturation Dynamics over Human Life , 2017, Immunity.

[18]  Takashi Saito,et al.  CD4 CTL, a Cytotoxic Subset of CD4+ T Cells, Their Differentiation and Function , 2017, Front. Immunol..

[19]  J. Marioni,et al.  Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data , 2016, bioRxiv.

[20]  M. Kubo,et al.  CRTAM determines the CD4+ cytotoxic T lymphocyte lineage , 2016, The Journal of experimental medicine.

[21]  O. Geiger,et al.  Bacterial membrane lipids: diversity in structures and pathways. , 2016, FEMS microbiology reviews.

[22]  G. Besra,et al.  Human autoreactive T cells recognize CD1b and phospholipids , 2015, Proceedings of the National Academy of Sciences.

[23]  G. Besra,et al.  Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells , 2015, The Journal of Immunology.

[24]  T. Terada,et al.  Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria , 2015, Scientific Reports.

[25]  Jamie Rossjohn,et al.  αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands , 2015, Nature Immunology.

[26]  Andreas Peschel,et al.  Synthesis and function of phospholipids in Staphylococcus aureus. , 2015, International journal of medical microbiology : IJMM.

[27]  J. Altman,et al.  CD1a autoreactive T cells recognize natural skin oils that function as headless antigens , 2013, Nature Immunology.

[28]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[29]  I. Wilson,et al.  Cutting Edge: CD1a Tetramers and Dextramers Identify Human Lipopeptide–Specific T Cells Ex Vivo , 2013, The Journal of Immunology.

[30]  G. Besra,et al.  Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs , 2013, Proceedings of the National Academy of Sciences.

[31]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[32]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[33]  Tetsuro Kobayashi,et al.  Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. , 2011, The Journal of experimental medicine.

[34]  A. Scelfo,et al.  High‐frequency and adaptive‐like dynamics of human CD1 self‐reactive T cells , 2011, European journal of immunology.

[35]  T. Beaty,et al.  Tight junction defects in patients with atopic dermatitis. , 2011, The Journal of allergy and clinical immunology.

[36]  R. Clark,et al.  CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire , 2010, Nature Immunology.

[37]  Y. Belkaid,et al.  Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells , 2010, The Journal of Immunology.

[38]  M. Amagai,et al.  External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers , 2009, The Journal of experimental medicine.

[39]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[40]  G. Pabst,et al.  Structure and thermotropic behavior of the Staphylococcus aureus lipid lysyl-dipalmitoylphosphatidylglycerol. , 2008, Biophysical journal.

[41]  J. Carucci,et al.  Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. , 2007, The Journal of allergy and clinical immunology.

[42]  R. Clark,et al.  A novel method for the isolation of skin resident T cells from normal and diseased human skin. , 2006, The Journal of investigative dermatology.

[43]  P. Moss,et al.  The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age , 2005, Clinical and experimental immunology.

[44]  R. Dwek,et al.  Molecular mechanism of lipopeptide presentation by CD1a. , 2005, Immunity.

[45]  I. Wilson,et al.  T Cell Activation by Lipopeptide Antigens , 2004, Science.

[46]  Michael Otto,et al.  Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine , 2001, The Journal of experimental medicine.

[47]  R. Flavell,et al.  Molecular basis of T-cell differentiation. , 1999, Cold Spring Harbor symposia on quantitative biology.

[48]  D. Schmitt,et al.  Langerhans Cells of Human Mucosa , 1989, The Journal of dermatology.

[49]  J. Leyden,et al.  Staphylococcus aureus in the lesions of atopic dermatitis , 1974, The British journal of dermatology.

[50]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.