ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction

This paper presents a new individual based optimization algorithm, which is inspired from asexual reproduction known as a remarkable biological phenomenon, called as asexual reproduction optimization (ARO). ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem; this leads to the fitter individual. ARO adaptive search ability along with its strength and weakness points are fully described in the paper. Furthermore, the ARO convergence to the global optimum is mathematically analyzed. To approve the effectiveness of the ARO performance, it is tested with several benchmark functions frequently used in the area of optimization. Finally, the ARO performance is statistically compared with that of an improved genetic algorithm (GA). Results of simulation illustrate that ARO remarkably outperforms GA.

[1]  C. Crawford,et al.  Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study , 2007 .

[2]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[3]  A. C. Giese,et al.  Annelids and echiurans , 1975 .

[4]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  P. Feldman Evolution of sex , 1975, Nature.

[6]  Jason D. Lohn,et al.  Evolutionary Optimization of Yagi-Uda Antennas , 2001, ICES.

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[9]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[10]  Henrik Jeldtoft Jensen,et al.  Who runs fastest in an adaptive landscape: sexual versus asexual reproduction , 2003, cond-mat/0309300.

[11]  D. Y. Sha,et al.  A hybrid particle swarm optimization for job shop scheduling problem , 2006, Comput. Ind. Eng..

[12]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  Weibo Song,et al.  Morphogenesis of Cyrtohymena tetracirrata (Ciliophora, Hypotrichia, Oxytrichidae) during binary fission , 2004 .

[15]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  R. B. Piercey,et al.  Binary and ternary fission studies with 252Cf , 2001 .

[18]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[19]  R. Michod,et al.  The Evolution of sex : an examination of current ideas , 1988 .

[20]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[21]  Tomohiro Yanagi,et al.  Photoperiodic reaction of sexual and asexual reproduction in Fragaria chiloensis L. CHI-24-1 plants grown at various temperatures , 2006 .

[22]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[23]  Kwangwon Lee,et al.  Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. , 2006, Fungal genetics and biology : FG & B.

[24]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[25]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[26]  D. Levin,et al.  Pest Pressure and Recombination Systems in Plants , 1975, The American Naturalist.

[27]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[28]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[29]  Silke Stertz,et al.  The intracellular sites of early replication and budding of SARS-coronavirus , 2007, Virology.

[30]  Zbigniew Michalewicz,et al.  Evolutionary Optimization , 2012, Variants of Evolutionary Algorithms for Real-World Applications.

[31]  K. Sebens,et al.  Asexual Reproduction in Anthopleura Elegantissima (Anthozoa: Actiniaria): Seasonality and Spatial Extent of Clones , 1982 .

[32]  H. L. Sanders,et al.  Marine Benthic Diversity: A Comparative Study , 1968, The American Naturalist.

[33]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[34]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[35]  Gary L. Haith,et al.  Comparing a coevolutionary genetic algorithm for multiobjective optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[36]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[37]  L. Francis,et al.  Contrast Between Solitary and Clonal Lifestyles in the Sea Anemone Anthopleura elegantissima , 1979 .

[38]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[39]  Filippo Neri,et al.  Search-Intensive Concept Induction , 1995, Evolutionary Computation.

[40]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 2004 .

[41]  Reinhard Männer,et al.  Tackling the Representation Problem by Stochastic Averaging , 1997, ICGA.

[42]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[43]  Mark J. Zoran,et al.  Regeneration and asexual reproduction share common molecular changes: upregulation of a neural glycoepitope during morphallaxis in Lumbriculus , 2005, Mechanisms of Development.

[44]  C. Ostwald,et al.  High-degree tumor budding and podia-formation in sporadic colorectal carcinomas with K-ras gene mutations. , 2007, Human pathology.

[45]  Xin Yao,et al.  Differential evolution for high-dimensional function optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[46]  R. Green,et al.  IS A LITTLE BIT OF SEX AS GOOD AS A LOT , 1995 .

[47]  Varghese S. Jacob,et al.  Augmented neural networks for task scheduling , 2003, Eur. J. Oper. Res..

[48]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[49]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[50]  Jane M. Lewis Identifying Harmful Marine Dinoflagellates , 2004, Journal of Applied Phycology.

[51]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[52]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[53]  D. Tilman,et al.  Sexuality and the Components of Environmental Uncertainty: Clues from Geographic Parthenogenesis in Terrestrial Animals , 1978, The American Naturalist.

[54]  Michelle Klautau,et al.  The extent of asexual reproduction in sponges of the genus Chondrilla (Demospongiae: Chondrosida) from the Caribbean and the Brazilian coasts , 2006 .

[55]  Phil Husbands,et al.  Simulated Co-Evolution as the Mechanism for Emergent Planning and Scheduling , 1991, ICGA.

[56]  G. C. Williams Sex and evolution. , 1975, Monographs in population biology.