Multivalued strong laws of large numbers in the slice topology. Application to integrands
暂无分享,去创建一个
[1] Gerald Beer,et al. A Polish topology for the closed subsets of a Polish space , 1991 .
[2] G. Beer. The slice topology: a viable alternative to Mosco convergence in nonreflexive spaces , 1992 .
[3] Fumio Hiai,et al. Convergence of conditional expectations and strong laws of large numbers for multivalued random variables , 1985 .
[4] F. Hiai,et al. Integrals, conditional expectations, and martingales of multivalued functions , 1977 .
[5] Gerald Beer,et al. On Mosco convergence of convex sets , 1988, Bulletin of the Australian Mathematical Society.
[6] Loi forte des grands nombres pour des ensembles aléatoires non bornés à valeurs dans un espace de Banach séparable , 1985 .
[7] Loi de probabilité des ensembles aléatoires à valeurs fermées dans un espace métrique séparable , 1983 .
[8] U. Mosco. On the continuity of the Young-Fenchel transform , 1971 .
[9] Zvi Artstein,et al. Law of Large Numbers for Random Sets and Allocation Processes , 1981, Math. Oper. Res..
[10] N. Etemadi. An elementary proof of the strong law of large numbers , 1981 .
[11] R. Wijsman. Convergence of sequences of convex sets, cones and functions. II , 1966 .
[12] M. Tsukada. Convergence of best approximations in a smooth Banach space , 1984 .
[13] R. Wijsman. Convergence of sequences of convex sets, cones and functions , 1964 .
[14] Roberto Lucchetti,et al. Weak topologies for the closed subsets of a metrizable space , 1993 .
[15] Gerald Beer,et al. Wijsman convergence of convex sets under renorming , 1994 .
[16] Constantin Zalinescu,et al. SET CONVERGENCES. AN ATTEMPT OF CLASSIFICATION , 1993 .