Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities

The performance of two recent ab initio computational thermochemistry schemes, W1 and W2 theory [J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999)], is assessed for an enlarged sample of thermochemical data consisting of the ionization potentials and electron affinities in the G2-1 and G2-2 sets, as well as the heats of formation in the G2-1 and a subset of the G2-2 set. We find W1 theory to be several times more accurate for ionization potentials and electron affinities than commonly used (and less expensive) computational thermochemistry schemes such as G2, G3, and CBS-QB3: W2 theory represents a slight improvement for electron affinities but no significant one for ionization potentials. The use of a two-point A+B/L5 rather than a three-point A+B/CL extrapolation for the self-consistent field (SCF) component greatly enhances the numerical stability of the W1 method for systems with slow basis set convergence. Inclusion of first-order spin–orbit coupling is essential for accurate ioniza...

[1]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[2]  J. B. Pedley,et al.  Thermochemical data of organic compounds , 1986 .

[3]  P. Taylor,et al.  A Definitive Heat of Vaporization of Silicon through Benchmark ab Initio Calculations on SiF4 , 1999, physics/9902054.

[4]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[5]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[6]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[7]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[8]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[9]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[10]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[11]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[12]  A. Becke Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals , 1997 .

[13]  L. Curtiss,et al.  THE RELATIVISTIC DIRAC-COULOMB-FOCK EFFECT ON ATOMIZATION ENERGIES , 1999 .

[14]  J. D. Morgan,et al.  Erratum: Rates of convergence of the partial-wave expansions of atomic correlation energies [J. Chem. Phys. 96, 4484 (1992)] , 1992 .

[15]  Matthew L. Leininger,et al.  Benchmark configuration interaction spectroscopic constants for X 1Σg+ C2 and X 1Σ+ CN+ , 1998 .

[16]  K. Peterson,et al.  Re-examination of atomization energies for the Gaussian-2 set of molecules , 1999 .

[17]  P. Jørgensen,et al.  Interconversion of diborane(4) isomers , 1992 .

[18]  D. M. Hirst Excited states of the CN ion: an ab initio study , 1994 .

[19]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[20]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[21]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[22]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[23]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[24]  Paul Geerlings,et al.  Calculation of ionization energies, electron affinities, electronegativities, and hardnesses using density functional methods , 1997 .

[25]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[26]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[27]  V. A. Medvedev,et al.  Thermodynamic properties of individual substances , 1982 .

[28]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[29]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[30]  P. Geerlings,et al.  Electron affinities of the first- and second-row atoms: Benchmark ab initio and density-functional calculations , 1999, physics/9902026.

[31]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[32]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[33]  Rudolf Kippenhahn,et al.  Methods in Computational Physics , 1967 .

[34]  Timothy J. Lee,et al.  Accurate ab initio anharmonic force field and heat of formation for silane , 1999 .

[35]  J. Berkowitz,et al.  Photoionization of HCN: The Electron Affinity and Heat of Formation of CN , 1969 .

[36]  W. D. Good,et al.  Thermodynamics of Organic Compounds. , 1980 .

[37]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[38]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[39]  L. Curtiss,et al.  Gaussian-3 theory using scaled energies , 2000 .

[40]  D. Schwenke A theoretical study of the ro-vibrational spectrum of the X state of CH3 , 1999 .

[41]  Krishnan Raghavachari,et al.  ASSESSMENT OF COMPLETE BASIS SET METHODS FOR CALCULATION OF ENTHALPIES OF FORMATION , 1998 .

[42]  G. A. Petersson,et al.  A Complete Basis Set Model Chemistry. Part 1. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements , 1988 .

[43]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[44]  On the integration accuracy in molecular density functional theory calculations using Gaussian basis sets , 2000, physics/0006069.

[45]  Trygve Helgaker,et al.  Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations , 2000 .

[46]  C. Bauschlicher,et al.  Boron Heat of Formation Revisited: Relativistic Effects on the BF3 Atomization Energy , 1999 .

[47]  P. Taylor,et al.  Revised Heat of Formation for Gaseous Boron: Basis Set Limit ab Initio Binding Energies of BF3 and BF , 1998 .

[48]  Krishnan Raghavachari,et al.  GAUSSIAN-3 THEORY USING DENSITY FUNCTIONAL GEOMETRIES AND ZERO-POINT ENERGIES , 1999 .

[49]  Fred A. Hamprecht,et al.  Development and assessment of new exchange-correlation functionals , 1998 .

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  P. Knowles,et al.  Convergence of Breit–Pauli spin–orbit matrix elements with basis set size and configuration interaction space: The halogen atoms F, Cl, and Br , 2000 .

[52]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[53]  J. Bauschlicher The Scalar Relativistic Contribution to the Atomization Energies of CF, CF4, and SiF4 , 2000 .

[54]  D. Dixon,et al.  Heats of Formation of Simple Perfluorinated Carbon Compounds , 1999 .

[55]  Jan M. L. Martin Benchmark Studies on Small Molecules , 2002 .

[56]  J. B. Pedley,et al.  Thermochemical data of organic compounds, 2nd edn , 1987 .

[57]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[58]  G. Ellison,et al.  Three methods to measure RH bond energies , 1994 .

[59]  John A Pople Quantum Chemical Models (Nobel Lecture). , 1999, Angewandte Chemie.

[60]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[61]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[62]  Karl K. Irikura,et al.  Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics , 1998 .

[63]  Donald G. Truhlar,et al.  Adiabatic connection for kinetics , 2000 .

[64]  J. M. Simoes,et al.  Energetics of organic free radicals , 1996 .

[65]  Richard L. Martin,et al.  All-electron relativistic calculations on silver hydride. An investigation of the Cowan-Griffin operator in a molecular species , 1983 .

[66]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[67]  Benchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields , 1999 .

[68]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[69]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[70]  Jan M. L. Martin,et al.  Basis set convergence in second-row compounds. The importance of core polarization functions , 1998 .