An Approach to the Creation and Presentation of Reference Gesture Datasets, for the Preservation of Traditional Crafts

[1]  M. M. Reijne,et al.  Accuracy of human motion capture systems for sport applications; state-of-the-art review , 2018, European journal of sport science.

[2]  Rajeev Srivastava,et al.  Recent evolution of modern datasets for human activity recognition: a deep survey , 2019, Multimedia Systems.

[3]  Antonio Fernández-Caballero,et al.  A survey of video datasets for human action and activity recognition , 2013, Comput. Vis. Image Underst..

[4]  Thomas C. Schmidt,et al.  EXMARaLDA – creating, analysing and sharing spoken language corpora for pragmatic research , 2009 .

[5]  Sheroz Khan,et al.  Motion capture sensing techniques used in human upper limb motion: a review , 2019, Sensor Review.

[6]  C.-C. Jay Kuo,et al.  Automatic Human Mocap Data Classification , 2014, IEEE Transactions on Multimedia.

[7]  Huaijiang Sun,et al.  Automated human motion segmentation via motion regularities , 2013, The Visual Computer.

[8]  Mathieu Barnachon,et al.  Ongoing human action recognition with motion capture , 2014, Pattern Recognit..

[9]  Michael J. Black,et al.  MoSh: motion and shape capture from sparse markers , 2014, ACM Trans. Graph..

[10]  David K. Woods,et al.  Tales From the Bleeding Edge: The Qualitative Analysis of Complex Video Data Using Transana , 2011 .

[11]  B. Prabhakaran,et al.  Segmentation and recognition of motion capture data stream by classification , 2007, Multimedia Tools and Applications.

[12]  Nikos Nikolaidis,et al.  Action recognition on motion capture data using a dynemes and forward differences representation , 2014, J. Vis. Commun. Image Represent..