A simple method to calculate first-passage time densities with arbitrary initial conditions

Numerous applications all the way from biology and physics to economics depend on the density of first crossings over a boundary. Motivated by the lack of general purpose analytical tools for compu ...

[1]  R. Chakrabarti,et al.  A lower bound to the survival probability and an approximate first passage time distribution for Markovian and non-Markovian dynamics in phase space. , 2009, The Journal of chemical physics.

[2]  C. Sire Crossing intervals of non-Markovian Gaussian processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Tetsuya Shimokawa,et al.  Coherence resonance and discharge time reliability in neurons and neuronal models , 2001, Neural Networks.

[4]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[5]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[6]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[7]  Satya N. Majumdar,et al.  Persistence and first-passage properties in nonequilibrium systems , 2013, 1304.1195.

[8]  D. Darling,et al.  THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PROCESS , 1953 .

[9]  D. Slepian The one-sided barrier problem for Gaussian noise , 1962 .

[10]  Ian F. Blake,et al.  Level-crossing problems for random processes , 1973, IEEE Trans. Inf. Theory.

[11]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[12]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[13]  Louis J. Cote,et al.  On fluctuations of sums of random variables , 1955 .

[14]  J. A. McFadden The axis-crossing intervals of random functions-II , 1958, IRE Trans. Inf. Theory.

[15]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[16]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[17]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[18]  D. S. Grebenkov,et al.  First exit times of harmonically trapped particles: a didactic review , 2014, 1411.3598.

[19]  L Schimansky-Geier,et al.  First passage time densities in resonate-and-fire models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Gillespie,et al.  Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  S. Redner A guide to first-passage processes , 2001 .

[22]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[23]  Satish Iyengar,et al.  Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data , 2008, Journal of Computational Neuroscience.

[24]  Satya N. Majumdar Persistence in nonequilibrium systems , 1999 .

[25]  E. Andersen On the fluctuations of sums of random variables II , 1953 .

[26]  A. Siegert On the First Passage Time Probability Problem , 1951 .

[27]  M. Artola,et al.  Laplace Transforms , 2020, Concise Encyclopedia of Modelling & Simulation.

[28]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .