Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.

[1]  Lewis Y. Geer,et al.  Database resources of the National Center for Biotechnology Information , 2014, Nucleic Acids Res..

[2]  Jesse C. J. van Dam,et al.  Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis , 2014, BMC Systems Biology.

[3]  D. Crick,et al.  Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids , 2014, Microbiology spectrum.

[4]  N. Sampson,et al.  Pathogen roid rage: Cholesterol utilization by Mycobacterium tuberculosis , 2014, Critical reviews in biochemistry and molecular biology.

[5]  F. Javier Luque,et al.  TuberQ: a Mycobacterium tuberculosis protein druggability database , 2014, Database J. Biol. Databases Curation.

[6]  Markus J. Herrgård,et al.  Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism , 2014, PLoS Comput. Biol..

[7]  James E. Galagan,et al.  Genomic insights into tuberculosis , 2014, Nature Reviews Genetics.

[8]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection , 2014, PLoS pathogens.

[9]  Zachary A. King,et al.  Constraint-based models predict metabolic and associated cellular functions , 2014, Nature Reviews Genetics.

[10]  M. Daffé,et al.  Mycolic acids: structures, biosynthesis, and beyond. , 2014, Chemistry & biology.

[11]  Y. Poquet,et al.  A central role for aspartate in Mycobacterium tuberculosis physiology and virulence , 2013, Front. Cell. Infect. Microbiol..

[12]  Andrzej M. Kierzek,et al.  Systems-Based Approaches to Probing Metabolic Variation within the Mycobacterium tuberculosis Complex , 2013, PloS one.

[13]  Wolfgang Wiechert,et al.  13C-Flux Spectral Analysis of Host-Pathogen Metabolism Reveals a Mixed Diet for Intracellular Mycobacterium tuberculosis , 2013, Chemistry & biology.

[14]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate , 2013, Nature chemical biology.

[15]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[16]  T. Dick,et al.  Characterization of Phosphofructokinase Activity in Mycobacterium tuberculosis Reveals That a Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic Intermediates under Hypoxia , 2013, PloS one.

[17]  S. Chakraborty,et al.  Para-Aminosalicylic Acid Acts as an Alternative Substrate of Folate Metabolism in Mycobacterium tuberculosis , 2013, Science.

[18]  Nathan E Lewis,et al.  Analysis of omics data with genome-scale models of metabolism. , 2013, Molecular bioSystems.

[19]  Jaques Reifman,et al.  Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia , 2012, PLoS Comput. Biol..

[20]  Jason A. Papin,et al.  Integration of expression data in genome-scale metabolic network reconstructions , 2012, Front. Physio..

[21]  Jennifer L. Reed,et al.  Shrinking the Metabolic Solution Space Using Experimental Datasets , 2012, PLoS Comput. Biol..

[22]  S. Kaufmann,et al.  Mycobacterium tuberculosis: success through dormancy. , 2012, FEMS microbiology reviews.

[23]  L. Amaral,et al.  Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. , 2012, International journal of antimicrobial agents.

[24]  Matthew D. McMahon,et al.  Analyses of MbtB, MbtE, and MbtF Suggest Revisions to the Mycobactin Biosynthesis Pathway in Mycobacterium tuberculosis , 2012, Journal of bacteriology.

[25]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[26]  C. Bertozzi,et al.  Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. , 2012, Chemistry & biology.

[27]  Bonnie Berger,et al.  MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis , 2012, Genome Biology.

[28]  L. Dijkhuizen,et al.  Structural Features in the KshA Terminal Oxygenase Protein That Determine Substrate Preference of 3-Ketosteroid 9α-Hydroxylase Enzymes , 2011, Journal of bacteriology.

[29]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[30]  Beatriz Galán,et al.  Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. , 2011, Microbiology.

[31]  S. Noack,et al.  13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation , 2011, PLoS pathogens.

[32]  H. Maamar,et al.  Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages , 2011, PLoS pathogens.

[33]  Andrzej M. Kierzek,et al.  Differential Producibility Analysis (DPA) of Transcriptomic Data with Metabolic Networks: Deconstructing the Metabolic Response of M. tuberculosis , 2011, PLoS Comput. Biol..

[34]  Gary K. Schoolnik,et al.  The Response of Mycobacterium Tuberculosis to Reactive Oxygen and Nitrogen Species , 2011, Front. Microbio..

[35]  Jason A. Papin,et al.  Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis , 2011, PLoS Comput. Biol..

[36]  S. Lee,et al.  Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery , 2011, Molecular systems biology.

[37]  Nagasuma Chandra,et al.  Modeling metabolic adjustment in Mycobacterium tuberculosis upon treatment with isoniazid , 2010, Systems and Synthetic Biology.

[38]  Johnjoe McFadden,et al.  Carbon flux rerouting during Mycobacterium tuberculosis growth arrest , 2010, Molecular microbiology.

[39]  Jaques Reifman,et al.  Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis , 2010, BMC Systems Biology.

[40]  B. Palsson,et al.  Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions , 2010, Molecular systems biology.

[41]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[42]  Jens Nielsen,et al.  Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes , 2010, PLoS Comput. Biol..

[43]  A. Nunn,et al.  Global tuberculosis drug development pipeline: the need and the reality , 2010, The Lancet.

[44]  Sharon L. Kendall,et al.  Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2 , 2010, Microbiology.

[45]  Irina Kolesnikova,et al.  A Thiolase of Mycobacterium tuberculosis Is Required for Virulence and Production of Androstenedione and Androstadienedione from Cholesterol , 2009, Infection and Immunity.

[46]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[47]  Melanie I. Stefan,et al.  BMC Systems Biology , 2022 .

[48]  Christopher M. Sassetti,et al.  igr Genes and Mycobacterium tuberculosis Cholesterol Metabolism , 2009, Journal of bacteriology.

[49]  Bas Teusink,et al.  Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation , 2009, PLoS Comput. Biol..

[50]  I. Smith,et al.  Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. , 2009, Biochemistry.

[51]  S. Cole,et al.  Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis , 2009, Science.

[52]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[53]  Gábor Balázsi,et al.  The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest , 2008, Molecular systems biology.

[54]  C. Senner,et al.  Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum , 2008, PLoS medicine.

[55]  M. Niederweis,et al.  Nutrient acquisition by mycobacteria. , 2008, Microbiology.

[56]  Ben Sidders,et al.  A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis , 2007, Molecular microbiology.

[57]  Robert Schuetz,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[58]  B. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007, BMC Systems Biology.

[59]  A. Kierzek,et al.  GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism , 2007, Genome Biology.

[60]  M. Vasil,et al.  Purification and Characterization of Mycobacterial Phospholipase A: an Activity Associated with Mycobacterial Cutinase , 2007, Journal of bacteriology.

[61]  Julian Parkhill,et al.  Genome plasticity of BCG and impact on vaccine efficacy , 2007, Proceedings of the National Academy of Sciences.

[62]  B. Bonde,et al.  Transcriptomic Analysis Identifies Growth Rate Modulation as a Component of the Adaptation of Mycobacteria to Survival inside the Macrophage , 2007, Journal of bacteriology.

[63]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[64]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[65]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[66]  Nagasuma R. Chandra,et al.  Flux Balance Analysis of Mycolic Acid Pathway: Targets for Anti-Tubercular Drugs , 2005, PLoS Comput. Biol..

[67]  J. McFadden,et al.  Compiling a Molecular Inventory for Mycobacterium bovis BCG at Two Growth Rates: Evidence for Growth Rate-Mediated Regulation of Ribosome Biosynthesis and Lipid Metabolism , 2005, Journal of bacteriology.

[68]  Hinrich W. H. Göhlmann,et al.  A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis , 2005, Science.

[69]  Catherine Brooksbank,et al.  The European Bioinformatics Institute's data resources: towards systems biology , 2004, Nucleic Acids Res..

[70]  T. Myers,et al.  The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism , 2004, Journal of Biological Chemistry.

[71]  Yang Liu,et al.  Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages , 2003, The Journal of experimental medicine.

[72]  Julian Parkhill,et al.  The complete genome sequence of Mycobacterium bovis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[74]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[75]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[76]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[77]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[78]  D. Fell,et al.  Fat synthesis in adipose tissue. An examination of stoichiometric constraints. , 1986, The Biochemical journal.

[79]  G. Youmans,et al.  Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Cells of Different Ages of Mycobacterium tuberculosis and the Relationship to Immunogenicity , 1968, Journal of bacteriology.

[80]  THE WORLD HEALTH ORGANIZATION , 1954 .

[81]  J. Reed,et al.  Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. , 2011, Metabolic engineering.

[82]  J. Saucerman,et al.  Whole-genome metabolic network reconstruction and constraint-based modeling. , 2011, Methods in enzymology.

[83]  John A. Morgan,et al.  BMC Systems Biology BioMed Central Research article , 2009 .

[84]  James C. Sacchettini,et al.  Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis , 2008, Nature Reviews Microbiology.

[85]  Adam M. Feist,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox , 2007, Nature Protocols.