GPU-Assisted Raycasting for Cosmological Adaptive Mesh Refinement Simulations

In the recent years the advent of powerful graphics hardware with flexible, programmable fragment shaders enabled interactive raycasting implementations which perform the ray-integration on a per-pixel basis. Unlike slicebased volume rendering these approaches do not suffer from rendering artifacts caused by varying sample distances along different ray-directions or limited frame-buffer precision. They further allow a direct realization of sophisticated optical models. In this paper we investigate the applicability of GPU-assisted raycasting to block-structured, locally refined grids. We present an interactive algorithm for artifact-free, high-quality rendering of data defined on this type of grid structure and apply it to render data of time-dependent, three-dimensional galaxy and star formation simulations. We use a physically motivated emission-absorption model to map the computed temperature and density fields to color and opacity.

[1]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[2]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[3]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[4]  Marcus A. Magnor,et al.  Reflection nebula visualization , 2005, VIS 05. IEEE Visualization, 2005..

[5]  G. Bryan,et al.  A Hybrid AMR Application for Cosmology and Astrophysics , 1997, astro-ph/9710187.

[6]  Wolfgang Straßer,et al.  Interactive rendering of large volume data sets , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[8]  B. Wandelt,et al.  Adaptive ray tracing for radiative transfer around point sources , 2001, astro-ph/0111033.

[9]  Volker Bromm,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2002 .

[10]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[11]  Tom Abel,et al.  THE H ii REGION OF A PRIMORDIAL STAR , 2007 .

[12]  John Shalf,et al.  Parallel cell projection rendering of adaptive mesh refinement data , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[13]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[14]  Hans-Christian Hege,et al.  Texture-based volume rendering of adaptive mesh refinement data , 2002, The Visual Computer.

[15]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[16]  Xiaoru Yuan,et al.  High dynamic range volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[18]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[19]  Feng Qiu,et al.  GPU-based object-order ray-casting for large datasets , 2005, Fourth International Workshop on Volume Graphics, 2005..