ALMA OBSERVATIONS OF ASTEROID 3 JUNO AT 60 KILOMETER RESOLUT ION

We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 ′′ (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid’s profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259±4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215±13 K, while the median over the whole surface is 197± 15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across t he surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, sugge sting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA’s potential to reso lve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics. Subject headings:minor planets, asteroids: general — minor planets, asteroids: individual (3 Juno) — planets and satellites: surfaces — techniques: interferometric

National Radio Astronomy Observatory | Astrophysics | Canada. | Taiwan | Charlottesville | H Germany | France. | Usa | UK. | Italy. | Japan. | I. O. Astronomy | J Korea | J. Hodge | N. R. A. Observatory | Socorro | E. Observatory | C. Brogan | J. Hibbard | T. Wiklind | K. Plarre | Leiden University | S. S. Institute | S. Kameno | N. Marcelino | E. Fomalont | R. Kneissl | A. Hales | R. Hills | A. Hirota | N. Phillips | T. Sawada | I. Gregorio-Monsalvo | J. Francesco | C. Laboratory | R. Tilanus | H. Francke | Chile. | U. Manchester | The Netherlands. | T. Hunter | W. Dent | P. Andreani | C. Vlahakis | P. Cortés | T. Jung | E. Liuzzo | S. Matsushita | C. Impellizzeri | R. Laing | D. Barkats | Bologna | T. Hill | J. Rodon | T. Kamiński | D. Garcia-Appadoo | A. Partnership | Y. Asaki | R. Lucas | A. Richards | I. Toledo | R. Aladro | J. Cortés | D. Espada | F. Galarza | L. Guzman-Ramirez | E. Humphreys | G. Marconi | A. Mignano | B. Nikolić | L. Nyman | M. Radiszcz | A. Remijan | S. Takahashi | B. V. Vilaro | L. Watson | J. Mangum | J. Gallardo | J. Garcia | S. Gonzalez | Y. Kurono | C. López | F. Morales | L. Videla | E. Villard | K. Observatory | Iram | A. Sinica | National Space Development Agency of Japan | I. O. Space | Astronautical Science | Japan Aerospace Exploration Agency | A. Group | Istituto di Radioastronomia | Institut de Plan'etologie et d'Astrophysique de Grenoble | J. B. C. F. Astrophysics | Korea Astronomy | L. Observatory | National Research Council Herzberg AstronomyAstrophysics | K. Nakanishi | T. V. Kempen | A. Moullet | L. Pérez | Joint Alma Observatory | D. Broguiere | S. Léon | S. Randall | B. Nikolic | A. Richards | Usa

[1]  M. Kaasalainen,et al.  ADAM: a general method for using various data types in asteroid reconstruction , 2015, 1501.05958.

[2]  S. Hellmich,et al.  The small binary asteroid (939) Isberga , 2014, 1411.0872.

[3]  M. T. Capria,et al.  Vesta surface thermal properties map , 2014 .

[4]  S. Keihm,et al.  Reconciling main belt asteroid spectral flux density measurements with a self-consistent thermophysical model , 2013 .

[5]  Adrian T. Lee,et al.  ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES , 2013, 1303.2722.

[6]  R. Roy,et al.  Photometry and models of selected main belt asteroids - IX. Introducing interactive service for asteroid models (ISAM) , 2012 .

[7]  Paul Hartogh,et al.  Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft , 2012 .

[8]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[9]  M. Kaasalainen,et al.  Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes , 2011, 1104.4227.

[10]  Richard E. Hills,et al.  ALMA: status report on construction and early results from commissioning , 2010, Astronomical Telescopes + Instrumentation.

[11]  T. Encrenaz,et al.  Millimeter and submillimeter measurements of asteroid (2867) Steins during the Rosetta fly-by , 2010 .

[12]  C. Woodward,et al.  RECTIFIED ASTEROID ALBEDOS AND DIAMETERS FROM IRAS AND MSX PHOTOMETRY CATALOGS , 2010, 1006.4362.

[13]  M. Gurwell,et al.  Thermal rotational lightcurve of dwarf-planet (1) Ceres at 235 GHz with the Submillimeter Array , 2010 .

[14]  Jonathan D. Romney,et al.  THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY , 2010 .

[15]  Mikko Kaasalainen,et al.  DAMIT: a database of asteroid models , 2010 .

[16]  T. Mukai,et al.  SIMULTANEOUS PHOTOMETRIC AND POLARIMETRIC OBSERVATIONS OF ASTEROID 3 JUNO , 2009 .

[17]  M. Chamberlain,et al.  Submillimeter photometry and lightcurves of Ceres and other large asteroids , 2009 .

[18]  M. Busch ALMA and asteroid science , 2009 .

[19]  J. Christou,et al.  Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres , 2008 .

[20]  A. Lovell Observations of asteroids with ALMA , 2008 .

[21]  M. Chamberlain,et al.  Submillimeter lightcurves of Vesta , 2007 .

[22]  S. Ostro,et al.  A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003 , 2007 .

[23]  J. Bell,et al.  Thermal infrared (8-13 μm) spectra of 29 asteroids: The Cornell Mid-Infrared Asteroid Spectroscopy (MIDAS) survey , 2005 .

[24]  S. Baliunas,et al.  Multispectral analysis of asteroid 3 Juno taken with the 100-inch telescope at Mount Wilson Observatory , 2003 .

[25]  M. Kaasalainen,et al.  Models of Twenty Asteroids from Photometric Data , 2002 .

[26]  F. Marzari,et al.  Asteroid detection at millimetric wavelengths with the PLANCK survey , 2002, astro-ph/0209373.

[27]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[28]  H. Matthews,et al.  High-Quality Photometry of Asteroids at Millimeter and Submillimeter Wavelengths , 1998 .

[29]  J. C. Shelton,et al.  Science with the ADOPT system on Mt. Wilson , 1997, Optics & Photonics.

[30]  M. Fulchignoni,et al.  Pole Orientation and Shape of 12 Asteroids , 1995 .

[31]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[32]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[33]  Per Magnusson,et al.  Distribution of spin axes and senses of rotation for 20 large asteroids , 1986 .

[34]  Stephen J. Keihm,et al.  Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping , 1984 .

[35]  S. A. Cowling Gravitational light deflection in the Solar System , 1984 .

[36]  D. Morrison,et al.  Calibration of the radiometric asteroid scale using occultation diameters , 1982 .

[37]  N. White,et al.  The diameter of Juno from its occultation of AG + 0 deg 1022 , 1981 .

[38]  E. Tedesco,et al.  Albedo and color contrasts on asteroid surfaces , 1979 .

[39]  O. Hansen An explication of the radiometric method for size and albedo determination. [asteroid IR photometry] , 1977 .

[40]  D. Morrison Asteroid sizes and albedos , 1977 .

[41]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[42]  J. Ulrichs,et al.  Electrical properties of rocks and their significance for lunar radar observations , 1969 .

[43]  K. Kellermann The thermal radio emission from Mercury, Venus, Mars, Saturn, and Uranus , 1966 .

[44]  E. Barnard The Diameter of the Asteroid Juno (3), determined with the Micrometer of the 40-inch Refractor of the Yerkes Observatory, with remarks on some of the other Asteriods , 1900 .

[45]  E. Barnard Micrometrical Determinations of the Diameters of the Minor Planets Ceres (1), Pallas (2), Juno (3), and Vesta (4), made with the Filar Micrometer of the 36-inch Equatorial of the Lick Observatory, and on the Albedos of those Planets , 1895 .