Global stability and predator dynamics in a model of prey dispersal in a patchy environment

On considere un systeme d'equations differentielles autonomes non lineaires. On determine l'equilibre de ce systeme

[1]  H. I. Freedman,et al.  Mathematical Models of Population Interactions with Dispersal. I: Stability of Two Habitats with and without a Predator , 1977 .

[2]  S. Levin Dispersion and Population Interactions , 1974, The American Naturalist.

[3]  Alan Hastings,et al.  Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates , 1982 .

[4]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[5]  R. Holt Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution , 1985 .

[6]  H. I. Freedman,et al.  Mathematical models of population interactions with dispersal II: Differential survival in a change of habitat , 1986 .

[7]  Y. Takeuchi,et al.  Global stability of single-species diffusion volterra models with continuous time delays , 1987 .

[8]  W. C. Chewning Migratory effects in predator-prey models , 1975 .

[9]  R. Vance The Effect of Dispersal on Population Stability in One-Species, Discrete-Space Population Growth Models , 1984, The American Naturalist.

[10]  H. I. Freedman Single species migration in two habitats: Persistence and extinction , 1987 .

[11]  C. B. Huffaker,et al.  Experimental Studies on Predation: Predation and Cyclamen-mite Populations on Strawberries in California. , 1956 .

[12]  H. I. Freedman,et al.  Persistence in a model of three competitive populations , 1985 .

[13]  Y. Takeuchi Diffusion effect on stability of Lotka-Volterra models. , 1986, Bulletin of mathematical biology.

[14]  Yasuhiro Takeuchi,et al.  Global stability in generalized Lotka-Volterra diffusion systems , 1986 .