Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities

[1]  Ahmed Koubaa,et al.  Dielectric characterization of white birch–activated biochar composites: A sustainable alternative to radar-absorbing materials , 2020, Journal of Composite Materials.

[2]  Ahmed Koubaa,et al.  Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues , 2019, Industrial Crops and Products.

[3]  Hassine Bouafif,et al.  Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review , 2019, Waste and Biomass Valorization.

[4]  Ahmed Koubaa,et al.  Performance of Physically and Chemically Activated Biochars in Copper Removal from Contaminated Mine Effluents , 2019, Water, Air, & Soil Pollution.

[5]  J. Arauzo,et al.  Challenges and Opportunities for Bio-oil Refining: A Review , 2019, Energy & Fuels.

[6]  R. Venderbosch Fast Pyrolysis , 2019, Thermochemical Processing of Biomass.

[7]  B. P.,et al.  The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review , 2019, Industrial Crops and Products.

[8]  J. Saxena,et al.  Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties , 2019, Biochar - An Imperative Amendment for Soil and the Environment.

[9]  L. Guindon,et al.  Forecasting the spatial distribution of logging residues across the Canadian managed forest , 2018, Canadian Journal of Forest Research.

[10]  Fabricio Gomes Gonçalves,et al.  Propiedades físicas y densitometría de rayos X en tableros de residuos de madera , 2018, Revista Ciência da Madeira - RCM.

[11]  Ahmed Koubaa,et al.  Production, characterization, and potential of activated biochar as adsorbent for phenolic compounds from leachates in a lumber industry site , 2018, Environmental Science and Pollution Research.

[12]  M. Balcerek,et al.  Review of Second Generation Bioethanol Production from Residual Biomass. , 2018, Food technology and biotechnology.

[13]  Ahmed Koubaa,et al.  Activated Biochar as an Effective Sorbent for Organic and Inorganic Contaminants in Water , 2018, Water, Air, & Soil Pollution.

[14]  D. Nicholls,et al.  Socioeconomic Constraints to Biomass Removal from Forest Lands for Fire Risk Reduction in the Western U.S. , 2018 .

[15]  John Sessions,et al.  Waste To Wisdom: Utilizing Forest Residues for the Production of Bioenergy and Biobased Products , 2018 .

[16]  A. Dufresne Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Hong Jiang,et al.  The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation. , 2017, Bioresource technology.

[18]  A. Bridgwater,et al.  Review of physicochemical properties and analytical characterization of lignocellulosic biomass , 2017 .

[19]  R. Trianoski,et al.  USE OF RESIDUES OF FORESTRY EXPLORATION OF Pinus taeda FOR PARTICLEBOARD MANUFACTURE , 2017 .

[20]  Han-Sup Han,et al.  Air Curtain Burners: A Tool for Disposal of Forest Residues , 2017 .

[21]  Xiaomin Zhu,et al.  Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. , 2017, Environmental pollution.

[22]  Ravinder Kumar,et al.  Future Microbial Applications for Bioenergy Production: A Perspective , 2017, Front. Microbiol..

[23]  J. Tumuluru Biomass Volume Estimation and Valorization for Energy , 2017 .

[24]  L. Guindon,et al.  Estimating the spatial distribution and locating hotspots of forest biomass from harvest residues and fire-damaged stands in Canada's managed forests , 2017 .

[25]  Gregory T. Schueneman,et al.  Overview of Cellulose Nanomaterials, Their Capabilities and Applications , 2016 .

[26]  G. Zeng,et al.  Biochar to improve soil fertility. A review , 2016, Agronomy for Sustainable Development.

[27]  U. Rova,et al.  Strategies for enhanced biogas generation through anaerobic digestion of forest material – An overview , 2016, BioResources.

[28]  B. Ramírez-Wong,et al.  Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications , 2016 .

[29]  T. Stevanovic,et al.  Fuel Properties of Sugar Maple and Yellow Birch Wood in Relation with Tree Vigor , 2016 .

[30]  A. Dufour Thermochemical Conversion of Biomass for the Production of Energy and Chemicals: Dufour/Thermochemical Conversion of Biomass for the Production of Energy and Chemicals , 2016 .

[31]  E. Thiffault,et al.  Nutrient Budgets in Forests Under Increased Biomass Harvesting Scenarios , 2016, Current Forestry Reports.

[32]  F. M. Reyes-Sosa,et al.  Enzymatic hydrolysis of biomass from wood , 2016, Microbial biotechnology.

[33]  Han-Sup Han,et al.  Forest residues recovered from whole-tree timber harvesting operations , 2015 .

[34]  T. Stevanovic,et al.  Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles , 2015 .

[35]  E. Thiffault,et al.  Recovery rate of harvest residues for bioenergy in boreal and temperate forests: A review , 2015 .

[36]  J. Lehmann,et al.  Biochar for environmental management : science, technology and implementation , 2015 .

[37]  E. White Woody Biomass for Bioenergy and Biofuels in the United States- A Briefing Paper , 2015 .

[38]  T. Tan,et al.  Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities , 2014, TheScientificWorldJournal.

[39]  Guoyin Wang,et al.  Erratum to “Experimental Analyses of the Major Parameters Affecting the Intensity of Outbursts of Coal and Gas” , 2014, The Scientific World Journal.

[40]  A. Dalai,et al.  Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion , 2014 .

[41]  P. Perré,et al.  Effect of Fiber Origin, Proportion, and Chemical Composition on the Mechanical and Physical Properties of Wood-Plastic Composites , 2014 .

[42]  Michael Obersteiner,et al.  Woody biomass energy potential in 2050 , 2014 .

[43]  Richard P. Vlosky,et al.  The global forest sector : changes, practices, and prospects , 2013 .

[44]  Stephen Baker,et al.  A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass , 2013 .

[45]  Abolghasem Shahbazi,et al.  Bio-oil production and upgrading research: A review , 2012 .

[46]  J. R. Hess,et al.  REVIEW: A review on biomass torrefaction process and product properties for energy applications , 2011 .

[47]  Evelyne Thiffault,et al.  Effects of forest biomass harvesting on soil productivity in boreal and temperate forests - a review. , 2011 .

[48]  Caroline A. Masiello,et al.  Biochar effects on soil biota – A review , 2011 .

[49]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[50]  Rubin Shmulsky,et al.  Forest Products and Wood Science An Introduction: Shmulsky/Forest Products and Wood Science An Introduction , 2011 .

[51]  Jin Kuk Kim,et al.  Recent Advances in the Processing of Wood-Plastic Composites , 2010 .

[52]  Ingwald Obernberger,et al.  The Pellet Handbook: The Production and Thermal Utilization of Biomass Pellets , 2010 .

[53]  Dilwyn Jenkins,et al.  Wood Pellet Heating Systems: The Earthscan Expert Handbook on Planning, Design and Installation , 2010 .

[54]  Mohammad J. Taherzadeh,et al.  Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production , 2010, BioResources.

[55]  D. Paré,et al.  Intensive biomass removals and site productivity in Canada: A review of relevant issues , 2010 .

[56]  Mikko Hupa,et al.  Chemical forms of ash-forming elements in woody biomass fuels , 2010 .

[57]  A. Dufresne,et al.  Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites , 2009 .

[58]  A. Bridgwater,et al.  Kinetic study on thermal decomposition of woods in oxidative environment , 2009 .

[59]  Y. S. Negi,et al.  Recent Development in Natural Fiber Reinforced Polypropylene Composites , 2009 .

[60]  M. Wolcott,et al.  Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites , 2008 .

[61]  M. Taherzadeh,et al.  Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review , 2008, International journal of molecular sciences.

[62]  Alireza Ashori,et al.  Wood-plastic composites as promising green-composites for automotive industries! , 2008, Bioresource technology.

[63]  Joseph E. Vorbach,et al.  Constant Tension: Regulating International Shipping , 2007 .

[64]  J. Lehmann Bio-energy in the black , 2007 .

[65]  D. Grebner,et al.  Utilization of Forest Derived Biomass for Energy Production in the U.S.A.: Status, Challenges, and Public Policies , 2007 .

[66]  A. Klyosov,et al.  Wood-Plastic Composites , 2007 .

[67]  Enyong Ding,et al.  Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups , 2007 .

[68]  J. Lehmann A handful of carbon , 2007, Nature.

[69]  P. Flynn,et al.  The relative cost of biomass energy transport , 2007, Applied biochemistry and biotechnology.

[70]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[71]  A. Demirbaş Thermochemical Conversion of Biomass to Liquid Products in the Aqueous Medium , 2005 .

[72]  Chris Jacobsen,et al.  Near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy for mapping nano‐scale distribution of organic carbon forms in soil: Application to black carbon particles , 2005 .

[73]  L. Davies,et al.  The “Production” Perspective , 2004, Russian Composers Abroad.

[74]  S. Karlsson,et al.  Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties , 2004 .

[75]  Johannes Lehmann,et al.  Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments , 2003, Plant and Soil.

[76]  A. Demirbas,et al.  Biomass resource facilities and biomass conversion processing for fuels and chemicals , 2001 .

[77]  L. Mendes,et al.  RESÍDUOS DE SERRARIAS NA PRODUÇÃO DE PAINÉIS DE MADEIRA AGLOMERADA DE EUCALIPTO , 2000 .

[78]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[79]  D. N. Roy,et al.  The chemistry of decayed aspen wood and perspectives on its utilization , 1993, Wood Science and Technology.

[80]  T. Singh,et al.  Calorific value variations in components of 10 Canadian tree species , 1986 .

[81]  Donald S. Scott,et al.  The continuous flash pyrolysis of biomass , 1984 .

[82]  Donald S. Scott,et al.  The flash pyrolysis of aspen-poplar wood , 1982 .

[83]  A. Achim,et al.  Untapped volume of surplus forest growth as feedstock for bioenergy , 2019, Biomass and Bioenergy.

[84]  A. Capodaglio,et al.  Ecofuel feedstocks and their prospects , 2019, Advances in Eco-Fuels for a Sustainable Environment.

[85]  Ahmed Koubaa,et al.  Effect of fiber and polymer variability on the rheological properties of wood polymer composites during processing , 2019 .

[86]  N. Mansuy,et al.  FROM UNLOVED WOODS TO DESIRABLE RENEWABLE BIOFUELS , 2017 .

[87]  Q. N. Nguyen Utilisation d'arbres de faible vigueur provenant de forêts feuillues tempérées comme matière première pour la fabrication de granules de bois , 2016 .

[88]  B. B. Uzun,et al.  Biochar: A Regional Supply Chain Approach in View of Climate Change Mitigation , 2016 .

[89]  Danchen Zhu,et al.  The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. , 2016, Bioresource technology.

[90]  P. Ravindra Advances in Bioprocess Technology , 2015 .

[91]  M. Studer,et al.  Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review. , 2015, Chimia.

[92]  Mohammad Jawaid,et al.  Agricultural Biomass Based Potential Materials , 2015, Springer International Publishing.

[93]  S. Mani,et al.  Impact of torrefaction on the grindability and fuel characteristics of forest biomass. , 2011, Bioresource technology.

[94]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[95]  Johannes Lehmann,et al.  Terra Preta Nova – Where to from Here? , 2009 .

[96]  Michael P. Wolcott,et al.  Effects of processing method and fiber size on the structure and properties of wood-plastic composites , 2009 .

[97]  Marcus Öhman,et al.  Effect of raw material composition in woody biomass pellets on combustion characteristics. , 2007 .

[98]  Yves Duchesne Ministère des Forêts, de la Faune et des Parcs - Plein de ressources , 2006 .

[99]  R. Rowlands,et al.  Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites , 2003 .

[100]  Trash or treasure ? Logging and mill residues in Asia and the Pacific , 2003 .

[101]  J. Goldemberg World energy assessment : energy and the challenge of sustainability , 2000 .

[102]  Ressources et industries forestières,et al.  Ressources et industries forestières, portrait statistique ... [ressource électronique] / Ministère des ressources naturelles, de la faune et des parcs, Direction du développement de l'industrie des produits forestiers , 1983 .

[103]  J. Bowyer,et al.  Forest products and wood science : an introduction , 1982 .

[104]  A. P. Harker,et al.  Calorific values for wood and bark and a bibliography for fuelwood. , 1982 .

[105]  A. J. Panshin,et al.  Textbook of Wood Technology , 1964 .

[106]  Da,et al.  Slash-and-char: a Feasible Alternative for Soil Fertility Management in the Central Amazon? , 2022 .

[107]  K. Hammond-Kosack,et al.  Rothamsted Repository Download , 2022 .

[108]  Johannes Lehmann,et al.  Slash-and-char: a Feasible Alternative for Soil Fertility Management in the Central Amazon? , 2022 .