Final results on the $$0\nu \beta \beta $$ decay half-life limit of $$^{100}$$Mo from the CUPID-Mo experiment

[1]  Anastasiia Zolotarova,et al.  Bolometric Double Beta Decay Experiments: Review and Prospects , 2021, Symmetry.

[2]  D. Poda Scintillation in Low-Temperature Particle Detectors , 2021, Physics.

[3]  F. Ferri,et al.  Phonon-mediated crystal detectors with metallic film coating capable of rejecting α and β events induced by surface radioactivity , 2021, Applied Physics Letters.

[4]  B. Paul,et al.  Precise measurement of $$2\nu \beta \beta $$ decay of $$^{100}$$Mo with the CUPID-Mo detection technology , 2019, 1912.07272.

[5]  C. Pagliarone,et al.  Lithium-Containing Crystals for Light Dark Matter Search Experiments , 2019, Journal of Low Temperature Physics.

[6]  B. Paul,et al.  The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects , 2019, The European Physical Journal C.

[7]  J. Beeman,et al.  Background model of the CUPID-0 experiment , 2019, The European Physical Journal C.

[8]  P. K. Raina,et al.  Nuclear Transition Matrix Elements for Double-β Decay Within PHFB Model , 2019, Front. Phys..

[9]  H. B. Kim,et al.  First results from the AMoRE-Pilot neutrinoless double beta decay experiment , 2019, The European Physical Journal C.

[10]  A. Poon,et al.  Neutrinoless Double-Beta Decay: Status and Prospects , 2019, Annual Review of Nuclear and Particle Science.

[11]  A. Giuliani,et al.  A multi-isotope $$0\nu 2\beta $$0ν2β bolometric experiment , 2017, 1712.08534.

[12]  C. Pagliarone,et al.  The CUORE cryostat: a 10 mK infrastructure for large bolometric arrays , 2017, 1904.05745.

[13]  B. Paul,et al.  Development of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}100Mo-containing scinti , 2017, The European Physical Journal C.

[14]  M. Viel,et al.  Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.

[15]  Ezio Previtali,et al.  Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis , 2014 .

[16]  B. Paul,et al.  Muon-induced background in the EDELWEISS dark matter search , 2013, 1302.7112.

[17]  F. Deppisch,et al.  Neutrinoless double-beta decay and physics beyond the standard model , 2012, 1208.0727.

[18]  W. Rodejohann Neutrinoless double beta decay and neutrino physics , 2012, 1206.2560.

[19]  F. Vissani,et al.  Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos , 2011, 1108.0004.

[20]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[21]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[22]  Kevin Kröninger,et al.  BAT - The Bayesian Analysis Toolkit , 2008, Comput. Phys. Commun..

[23]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[24]  H. Gove,et al.  Annual Review Of Nuclear And Particle Science , 1984 .

[25]  P. Schwaller,et al.  Leptogenesis , 2008, 0802.2962.

[26]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[27]  V. Tretyak,et al.  TABLES OF DOUBLE BETA DECAY DATA—AN UPDATE , 2002 .

[28]  G. Nardulli,et al.  A STUDY OF THE REACTIONS , 1992 .