Simulation of cross-shore breaker bar development utilizing a stabilized two-equation turbulence model

[1]  Yuzhu Li,et al.  Reynolds stress turbulence modelling of surf zone breaking waves , 2022, Journal of Fluid Mechanics.

[2]  I. Losada,et al.  Waves and structure interaction using multi-domain couplings for Navier-Stokes solvers in OpenFOAM®. Part II: Validation and application to complex cases , 2021 .

[3]  S. Hulscher,et al.  MODELLING OF WAVE OVERTOPPING AT DIKES USING OPENFOAM , 2020, Coastal Engineering Proceedings.

[4]  P. Troch,et al.  An Inter-Model Comparison for Wave Interactions with Sea Dikes on Shallow Foreshores , 2020 .

[5]  Yuzhu Li,et al.  Instability of the realizable k–ε turbulence model beneath surface waves , 2020, Physics of Fluids.

[6]  I. Losada,et al.  Wave and structure interaction using multi-domain couplings for Navier-Stokes solvers in OpenFOAM®. Part I: Implementation and validation , 2020 .

[7]  D. Fuhrman,et al.  Stabilized RANS simulation of surf zone kinematics and boundary layer processes beneath large-scale plunging waves over a breaker bar , 2020, 2010.14855.

[8]  T. Hsu,et al.  A numerical study of sheet flow driven by velocity and acceleration skewed near-breaking waves on a sandbar using SedWaveFoam , 2019, Coastal Engineering.

[9]  Jesper Sandvig Mariegaard,et al.  TOWARDS AN ENGINEERING MODEL FOR PROFILE EVOLUTION: DETAILED 3D SEDIMENT TRANSPORT MODELLING , 2019, Coastal Sediments 2019.

[10]  P. Scandura,et al.  Spatial and temporal distributions of turbulence under bichromatic breaking waves , 2019, Coastal Engineering.

[11]  D. Fuhrman,et al.  Numerical modeling of flow and morphology induced by a solitary wave on a sloping beach , 2019, Applied Ocean Research.

[12]  D. Fuhrman,et al.  On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier–Stokes models , 2018, Journal of Fluid Mechanics.

[13]  T. Hsu,et al.  A Numerical Study of Sheet Flow Under Monochromatic Nonbreaking Waves Using a Free Surface Resolving Eulerian Two‐Phase Flow Model , 2018, Journal of Geophysical Research: Oceans.

[14]  David R. Fuhrman,et al.  Performance of interFoam on the simulation of progressive waves , 2018, Coastal Engineering Journal.

[15]  S. Hulscher,et al.  Bedload and suspended load contributions to breaker bar morphodynamics , 2017 .

[16]  J. Ribberink,et al.  RANS-VOF modeling of hydrodynamics and sand transport under full-scale non-breaking and breaking waves , 2017 .

[17]  J. Ribberink,et al.  Near-bed hydrodynamics and turbulence below a large-scale plunging breaking wave over a mobile barred bed profile , 2016 .

[18]  Daniel Conley,et al.  Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone , 2016 .

[19]  Daniel Calvete,et al.  Onshore sandbar migration in the surf zone: New insights into the wave‐induced sediment transport mechanisms , 2015 .

[20]  Jørgen Fredsøe,et al.  Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines , 2014 .

[21]  Niels Gjøl Jacobsen,et al.  Formation and development of abreaker bar under regular waves. Part1: Model description and hydrodynamics , 2014 .

[22]  J. Fredsøe,et al.  Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology , 2014 .

[23]  J. Fredsøe,et al.  Cross-shore redistribution of nourished sand near a breaker bar , 2014 .

[24]  Jørgen Fredsøe,et al.  A wave generation toolbox for the open‐source CFD library: OpenFoam® , 2012 .

[25]  Marcel Zijlema,et al.  SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coas , 2011 .

[26]  P. K. Tonnon,et al.  Numerical modelling of erosion and accretion of plane sloping beaches at different scales , 2011 .

[27]  L. C. van Rijn,et al.  Modeling sediment transport beneath skewed asymmetric waves above a plane bed , 2009 .

[28]  Suad Jakirlić,et al.  Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  B. Sumer,et al.  Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects , 2009 .

[30]  Jørgen Fredsøe,et al.  Bed slope effects on turbulent wave boundary layers: 1. Model validation and quantification of rough‐turbulent results , 2009 .

[31]  Maurizio Brocchini,et al.  The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows , 2008, Journal of Fluid Mechanics.

[32]  Ad Reniers,et al.  Modeling cross-shore sandbar behavior on the timescale of weeks , 2007 .

[33]  D. Walstra,et al.  Unified View of Sediment Transport by Currents and Waves. IV: Application of Morphodynamic Model , 2007 .

[34]  B. Sumer,et al.  Numerical and experimental investigation of flow and scour around a circular pile , 2005, Journal of Fluid Mechanics.

[35]  G. Stelling,et al.  Development and validation of a three-dimensional morphological model , 2004 .

[36]  Tian-Jian Hsu,et al.  Toward modeling turbulent suspension of sand in the nearshore , 2004 .

[37]  Pengzhi Lin,et al.  A numerical study of breaking waves in the surf zone , 1998, Journal of Fluid Mechanics.

[38]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[39]  J. Kirby,et al.  Observation of undertow and turbulence in a laboratory surf zone , 1994 .

[40]  B. Sumer,et al.  Wave boundary layers in a convergent tunnel , 1993 .

[41]  Jørgen Fredsøe,et al.  A Sediment Transport Model for Straight Alluvial Channels , 1976 .

[42]  H. Wu,et al.  Simulation of wave-current interaction with a sinusoidal bottom using OpenFOAM , 2020 .

[43]  P. Troch,et al.  Delft University of Technology Validation of RANS modelling for wave interactions with sea dikes on shallow foreshores using a large-scale experimental dataset , 2020 .

[44]  Gangfeng Ma,et al.  Shock-capturing non-hydrostatic model for fully dispersive surface wave processes , 2012 .

[45]  Scott F. Bradford Numerical Simulation of Surf Zone Dynamics , 2000 .