Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices

The demand for improved electronic and optoelectronic devices has fuelled the development of epitaxial growth techniques for single-crystalline semiconductors. However, lattice and thermal expansion coefficient mismatch problems limit the options for growth and integration of high-efficiency electronic and photonic devices on dissimilar materials. Accordingly, advanced epitaxial growth and layer lift-off techniques have been developed to address issues relating to lattice mismatch. Here, we review epitaxial growth and layer-transfer techniques for monolithic integration of dissimilar single-crystalline materials for application in advanced electronic and photonic devices. We also examine emerging epitaxial growth techniques that involve two-dimensional materials as an epitaxial release layer and explore future integrated computing systems that could harness both advanced epitaxial growth and lift-off approaches.This Review Article examines the development of epitaxial growth and layer transfer techniques for monolithic integration of dissimilar single-crystalline materials for application in advanced electronic and photonic devices.

[1]  Aiping Chen,et al.  Novel Layered Supercell Structure from Bi2AlMnO6 for Multifunctionalities. , 2017, Nano letters.

[2]  D. Bunandar,et al.  A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. , 2017, Nature nanotechnology.

[3]  S. Banerjee,et al.  Exfoliated, thin, flexible germanium heterojunction solar cell with record FF ¼58.1% , 2013 .

[4]  Dong Liu,et al.  AlGaAs/Si dual‐junction tandem solar cells by epitaxial lift‐off and print‐transfer‐assisted direct bonding , 2018 .

[5]  Serge Oktyabrsky,et al.  Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping , 2016 .

[6]  R. Horng,et al.  Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications , 2014 .

[7]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[8]  K. Sunouchi,et al.  Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .

[9]  Kent D. Choquette,et al.  Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters , 2014 .

[10]  Seikoh Yoshida,et al.  C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE , 2007 .

[11]  E. J. Haverkamp,et al.  Wafer reuse for repeated growth of III–V solar cells , 2010 .

[12]  Kevin J. Chen,et al.  Low On-Resistance Normally-Off GaN Double-Channel Metal–Oxide–Semiconductor High-Electron-Mobility Transistor , 2015, IEEE Electron Device Letters.

[13]  Zhang,et al.  Atomistic Processes in the Early Stages of Thin-Film Growth , 1997, Science.

[14]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[15]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[16]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[17]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[18]  Heike Riel,et al.  Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si , 2015 .

[19]  S. Forrest,et al.  Reuse of GaAs substrates for epitaxial lift-off by employing protection layers , 2012 .

[20]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[21]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[22]  M. Meitl,et al.  Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes , 2017 .

[23]  Don Monroe,et al.  Relaxed GexSi1−x structures for III–V integration with Si and high mobility two‐dimensional electron gases in Si , 1992 .

[24]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[25]  Strain-accelerated HF etching of AlAs for epitaxial lift-off , 2004 .

[26]  Jianliang Xiao,et al.  Compliant, Heterogeneously Integrated GaAs Micro‐VCSELs towards Wearable and Implantable Integrated Optoelectronics Platforms , 2014 .

[27]  C. Packard,et al.  Controlled exfoliation of (100) GaAs-based devices by spalling fracture , 2016 .

[28]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[29]  Han-Don Um,et al.  Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping , 2013 .

[30]  A. Wibowo,et al.  Epitaxial Lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell , 2018, Solar Energy Materials and Solar Cells.

[31]  H. Ishida,et al.  Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation , 2007, IEEE Transactions on Electron Devices.

[32]  Lukas Czornomaz,et al.  InGaAs FinFETs Directly Integrated on Silicon by Selective Growth in Oxide Cavities , 2018, Materials.

[33]  J. Schermer,et al.  Epitaxial Lift‐Off for large area thin film III/V devices , 2005 .

[34]  Jaejin Lee,et al.  Highly efficient single-junction GaAs thin-film solar cell on flexible substrate , 2016, Scientific Reports.

[35]  Dewei Xu,et al.  High-performance flexible thin-film transistors exfoliated from bulk wafer. , 2012, Nano letters.

[36]  Stephen R. Forrest,et al.  Dynamic kirigami structures for integrated solar tracking , 2015, Nature Communications.

[37]  Y. Takamura,et al.  Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer , 2016 .

[38]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[39]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[40]  Jagdish Narayan,et al.  Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper) , 2013 .

[41]  C. R. Giuliano Laser‐induced damage in transparent dielectrics: ion beam polishing as a means of increasing surface damage thresholds , 1972 .

[42]  Davood Shahrjerdi,et al.  Layer transfer by controlled spalling , 2013 .

[43]  P. Hashemi,et al.  First RF characterization of InGaAs replacement metal gate (RMG) nFETs on SiGe-OI FinFETs fabricated by 3D monolithic integration , 2017, 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS).

[44]  M. Mehregany,et al.  Conventional and pendeo-epitaxial growth of GaN(0 0 0 1) thin films on Si(1 1 1) substrates , 2001 .

[45]  P. Orders,et al.  Determination of critical layer thickness in InxGa1−xAs/GaAs heterostructures by x‐ray diffraction , 1987 .

[46]  Christoph Gerhard,et al.  Impact of the Polishing Suspension Concentration on Laser Damage of Classically Manufactured and Plasma Post-Processed Zinc Crown Glass Surfaces , 2018, Applied Sciences.

[47]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[48]  L. Seravalli,et al.  Quantum dot nanostructures and molecular beam epitaxy , 2003 .

[49]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[50]  Dirk Englund,et al.  High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. , 2015, Nano letters.

[51]  Gerald Siefer,et al.  Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight , 2009 .

[52]  Sang-Hoon Bae,et al.  Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials , 2018, Science.

[53]  Jiaming Zhang,et al.  Analogue signal and image processing with large memristor crossbars , 2017, Nature Electronics.

[54]  Sang-Hoon Bae,et al.  Integration of bulk materials with two-dimensional materials for physical coupling and applications , 2019, Nature Materials.

[55]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[56]  E. Yoon,et al.  Thickness monitoring of GaAs growth by surface photoabsorption in metalorganic chemical vapor deposition , 1998 .

[57]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[58]  J. Ott,et al.  Layer transfer of bulk gallium nitride by controlled spalling , 2017 .

[59]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[60]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[61]  T. Palacios,et al.  High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates , 2017, IEEE Electron Device Letters.

[62]  John A Rogers,et al.  High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. , 2012, Small.

[63]  Eugene A. Fitzgerald,et al.  Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation , 2007 .

[64]  Hui Yang,et al.  Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si , 2018, Light: Science & Applications.

[65]  S. Forrest,et al.  Flexible Thin-Film InGaAs Photodiode Focal Plane Array , 2016 .

[66]  Davood Shahrjerdi,et al.  Ultralight High‐Efficiency Flexible InGaP/(In)GaAs Tandem Solar Cells on Plastic , 2013 .

[67]  N. Cheung,et al.  Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off , 1999 .

[68]  P. Hashemi,et al.  Advanced 3D Monolithic hybrid CMOS with Sub-50 nm gate inverters featuring replacement metal gate (RMG)-InGaAs nFETs on SiGe-OI Fin pFETs , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[69]  Stephen R. Forrest,et al.  Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators , 2015, Light: Science & Applications.

[70]  J. Narayan,et al.  Domain epitaxy: A unified paradigm for thin film growth , 2003 .

[71]  E. Tsymbal,et al.  Direct observation of a two-dimensional hole gas at oxide interfaces , 2018, Nature Materials.

[72]  C. Hoof,et al.  MESFET lift-off from GaAs substrate to glass host , 1989 .

[73]  Jongseung Yoon,et al.  Dramatically Enhanced Performance of Flexible Micro‐VCSELs via Thermally Engineered Heterogeneous Composite Assemblies , 2015 .

[74]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[75]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[76]  Can Bayram,et al.  Vertical Light-Emitting Diode Fabrication by Controlled Spalling , 2013 .

[77]  Matthew Meitl,et al.  Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers , 2012, Nature Photonics.

[78]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[79]  Masahiko Sano,et al.  High-Power, Long-Lifetime InGaN/GaN/AlGaN-Based Laser Diodes Grown on Pure GaN Substrates , 1998 .

[80]  Heike Riel,et al.  Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[81]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[82]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[83]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.

[84]  E. Yablonovitch,et al.  Semiconductor Surface-Molecule Interactions Wet Etching of InP by α-hydroxy Acids , 2002 .

[85]  Heung Cho Ko,et al.  Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer , 2014 .

[86]  Weidong Zhou,et al.  Transfer-printed stacked nanomembrane lasers on silicon , 2012, Nature Photonics.

[87]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[88]  S. Oktyabrsky,et al.  Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures , 1998 .

[89]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[90]  Gerhard Abstreiter,et al.  High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer , 1992 .

[91]  Y. Yeo,et al.  Heteroepitaxial growth of In0.30Ga0.70As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer , 2016 .

[92]  Satyavolu S. Papa Rao,et al.  GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction , 2015 .

[93]  Stephen R. Forrest,et al.  Ultrathin film, high specific power InP solar cells on flexible plastic substrates , 2009 .

[94]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[95]  U. Mishra,et al.  Anisotropic epitaxial lateral growth in GaN selective area epitaxy , 1997 .

[96]  M. Umeno,et al.  Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .

[97]  J. A. Ott,et al.  Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies , 2011, IEEE Journal of Photovoltaics.

[98]  D. Bour,et al.  Vertical Power p-n Diodes Based on Bulk GaN , 2015, IEEE Transactions on Electron Devices.

[99]  William S. Wong,et al.  Damage-free separation of GaN thin films from sapphire substrates , 1998 .

[100]  David C. Look,et al.  Growth and characteristics of AlGaN/GaN heterostructures on sp^2-bonded BN by metal–organic chemical vapor deposition , 2016 .

[101]  Philip D Rack,et al.  Evolutionary selection growth of two-dimensional materials on polycrystalline substrates , 2018, Nature Materials.

[102]  Shuji Nakamura,et al.  Novel metalorganic chemical vapor deposition system for GaN growth , 1991 .

[103]  G. Whitesides,et al.  Water-soluble sacrificial layers for surface micromachining. , 2005, Small.

[104]  J. Greer History and current status of commercial pulsed laser deposition equipment , 2014 .

[105]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[106]  Zhigang Suo,et al.  Steady-state cracking in brittle substrates beneath adherent films , 1989 .

[107]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[108]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[109]  Sebastian Lourdudoss,et al.  Heteroepitaxy and selective area heteroepitaxy for silicon photonics , 2012 .

[110]  J. Grossman,et al.  Polarity governs atomic interaction through two-dimensional materials , 2018, Nature Materials.

[111]  Robert F. Davis,et al.  Pendeoepitaxy of gallium nitride thin films , 1999 .

[112]  M. Asif Khan,et al.  High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction , 1993 .

[113]  J. Rogers,et al.  Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. , 2014, Nature materials.

[114]  Olivier Durand,et al.  Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN , 2007 .

[115]  Leathen Shi,et al.  Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics , 2013, Nature Communications.

[116]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[117]  K. Kumakura,et al.  Layered boron nitride as a release layer for mechanical transfer of GaN-based devices , 2012, Nature.