On the Substrate Thermal Optimization in SiC-Based Backside-Mounted High-Power GaN FETs

This paper presents a discussion on the substrate thermal design of backside-mounted power GaN high-electron mobility transistors. After a review on the thermal properties of the relevant materials and their temperature dependences, design guidelines are proposed on the basis of 3-D thermal simulations; the results presented suggest that in SiC-based devices, substrate thinning does not typically improve the thermal resistance or the dynamic thermal behavior. Contrary to what happens in III-V GaAs- or InP-based discrete or integrated devices, therefore, microstrip design on a thinned substrate (as opposed to coplanar design on a comparatively thick substrate) is generally not thermally superior. This should make possible, from the thermal standpoint, the realization of coplanar multifunctional GaN-based monolithic microwave integrated circuits integrating, e.g., low-noise and power stages and avoiding the use of via holes.

[1]  J. Palmour,et al.  Progress in SiC : from material growth to commercial device development , 1999 .

[2]  I. Ferguson,et al.  HIGH SPATIAL RESOLUTION THERMAL CONDUCTIVITY OF LATERAL EPITAXIAL OVERGROWN GAN/SAPPHIRE (0001) USING A SCANNING THERMAL MICROSCOPE , 1999 .

[3]  Fred H. Pollak,et al.  High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence , 2000 .

[4]  A. Balandin,et al.  Effect of dislocations on thermal conductivity of GaN layers , 2001 .

[5]  E. Velmre,et al.  Modeling of Lattice Heat Conductivity and Thermopower in SiC Considering the Four-Phonon Scattering Processes , 2003 .

[6]  R. Berman Comment on Witek's paper on thermal conductivity of some nitrides , 1999 .

[7]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[8]  Fabrizio Bonani,et al.  On the application of the Kirchhoff transformation to the steady-state thermal analysis of semiconductor devices with temperature-dependent and piecewise inhomogeneous thermal conductivity , 1995 .

[9]  M. Lades Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC , 2000 .

[10]  Robert Anholt,et al.  Electrical and thermal characterization of MESFETs, HEMTs, and HBTs , 1994 .

[11]  I. Ferguson,et al.  Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy , 2000 .

[12]  Umesh K. Mishra,et al.  AlGaN/GaN High Electron Mobility Transistors , 2007 .

[13]  P. Romanini,et al.  Experimental validation of GaN HEMTs thermal management by using photocurrent measurements , 2006, IEEE Transactions on Electron Devices.

[14]  I. Barin Thermochemical data of pure substances , 1989 .

[15]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[16]  S. Nishino,et al.  The Development of 2in 6H-SiC Wafer with High Thermal-Conductivity , 2002 .

[17]  D. L'hôte,et al.  Charge and heat collection in a 70 g heat/ionization cryogenic detector for dark matter search , 2000 .

[18]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[19]  A. Balandin,et al.  Modeling of Thermal Conductivity of Polycrystalline GaN Films , 2003 .

[20]  J. Palmour,et al.  Progress in the industrial production of SiC substrates for semiconductor devices , 2001 .

[21]  G. Ghione,et al.  Thermal design of power GaN FETs in microstrip and coplanar MMICs , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[22]  J. J. Wang,et al.  High rate etching of SiC and SiCN in NF3 inductively coupled plasmas , 1998 .

[23]  Christian Fazi,et al.  Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications , 2000 .

[24]  Keiichi Yamamoto,et al.  Raman microprobe study on temperature distribution during cw laser heating of silicon on sapphire , 1986 .

[25]  H. A. Hung,et al.  Accurate determination of thermal resistance of FETs , 2005, IEEE Transactions on Microwave Theory and Techniques.

[26]  A. Witek,et al.  Some aspects of thermal conductivity of isotopically pure diamond—a comparison with nitrides , 1998 .

[27]  J. Torvik,et al.  Analysis of Power Dissipation and High Temperature Operation in 4H-SiC Bipolar Junction Transistors with 4.9 MW/cm2 Power Density Handling Ability , 2004 .

[28]  E. A. Burgemeister,et al.  Thermal conductivity and electrical properties of 6H silicon carbide , 1979 .

[29]  J. Muth,et al.  Temperature and Dislocation Density Effects on the Thermal Conductivity of Bulk Gallium Nitride , 2005 .

[30]  Claudio Lanzieri,et al.  Thermal resistance measurement of GaAs MESFETs by means of photocurrent spectrum analysis and comparison with simulations , 2005 .

[31]  Harald Mehling,et al.  Experimental and Theoretical Analysis of the High Temperature Thermal Conductivity of Monocrystalline SiC , 1997 .

[32]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[33]  M. Ostling,et al.  Measurements and simulations of self-heating and switching with 4H-SiC power BJTs , 2003, ISPSD '03. 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003. Proceedings..

[34]  C. Zetterling,et al.  Via-hole etching for SiC , 1999 .

[35]  Alexander A. Balandin,et al.  Increased thermal conductivity of free‐standing low‐dislocation‐density GaN films , 2005 .

[36]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[37]  A. S. Royet,et al.  Self-heating effects in silicon carbide MESFETs , 2000 .

[38]  Wanchun Tang,et al.  Simple formula of a patch capacitor on a grounded substrate of two layers , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[39]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[40]  S. Denbaars,et al.  Thermal conductivity of lateral epitaxial overgrown GaN films , 1999 .

[41]  M. Lades Modeling and Simulation of Wide Bandgap Semiconductor Devices , 2000 .