COMPLEX PROBABILITY THEORY AND PROGNOSTIC

The Kolmogorov’s system of axioms can be extended to encompass the imaginary set of numbers and this b y adding to the original five axioms an additional th ree axioms. Hence, any experiment can thus be executed in what is now the complex set C (Real set R with real probability + Imaginary set M with imaginary probability). The objective here is to evaluate the complex probabilities by considering supplementary new imaginary dimensions to the event occurring in the “real” laboratory. Whatever the probability distrib ution of the input random variable in R is, the correspondin g probability in the whole set C is always one, so the outcome of the random experiment in C can be predicted totally. The result indicates that chance and l uck in R is replaced now by total determinism in C. This new complex probability model will be applied to the c oncepts of degradation and the Remaining Useful Lifetime (RUL), thus to the field of prognostic.

[1]  H. M. Collins,et al.  Dreams of a Final Theory , 1999 .

[2]  Stephanie Boehm,et al.  Chaos Making A New Science , 2016 .

[3]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[4]  Abdo Abou Jaoude THE COMPLEX STATISTICS PARADIGM AND THE LAW OF LARGE NUMBERS , 2013 .

[5]  Bernhard Poerksen,et al.  The end of certainty , 1992 .

[6]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[7]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[8]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[9]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[10]  J. Gullberg Mathematics: From the Birth of Numbers , 1997 .

[11]  Raymond H. Myers,et al.  Probability and Statistics for Engineers and Scientists. , 1973 .

[12]  J. Pier Development of mathematics , 1994 .

[13]  H. Poincaré La science et l'hypothèse , 1968 .

[14]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[15]  D. Dacunha-castelle Chemins de l'aléatoire : le hasard et le risque dans la société moderne , 1996 .

[16]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[17]  I. Stewart Does God Play Dice? The New Mathematics of Chaos , 1989 .

[18]  Curtis F. Gerald Applied numerical analysis , 1970 .

[19]  Abdo Abou Jaoude,et al.  Prediction in Complex Dimension Using Kolmogorov's Set of Axioms , 2010 .

[20]  Walter L. Smith Probability and Statistics , 1959, Nature.

[21]  B. Greene,et al.  The fabric of the cosmos : space, time, and the texture of reality , 2004 .

[22]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[23]  Jean-Luc Chabert,et al.  Chaos et déterminisme , 1992 .

[24]  Gunther S. Stent,et al.  Does God Play Dice , 1979 .

[25]  J. McMaster,et al.  The Elegant Universe , 1999 .

[26]  W J Wall,et al.  From here to infinity. , 2000, Biologist.

[27]  J. Peiffer,et al.  Une histoire des mathématiques : routes et dédales , 1986 .

[28]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[29]  Patrick Portella Entre le temps et l'éternité , 2002 .

[30]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[31]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.