Variance estimation and sequential stopping in steady-state simulations using linear regression

We propose a method for estimating the variance parameter of a discrete, stationary stochastic process that involves combining variance estimators at different run lengths using linear regression. We show that the estimator thus obtained is first-order unbiased and consistent under two distinct asymptotic regimes. In the first regime, the number of constituent estimators used in the regression is fixed and the numbers of observations corresponding to the component estimators grow in a proportional manner. In the second regime, the number of constituent estimators grows while the numbers of observations corresponding to each estimator remain fixed. We also show that for m-dependent stochastic processes, one can use regression to obtain asymptotically normally distributed variance estimators in the second regime. Analytical and numerical examples indicate that the new regression-based estimators give good mean-squared-error performance in steady-state simulations. The regression methodology presented in this article can also be applied to estimate the bias of variance estimators. As an example application, we present a new sequential-stopping rule that uses the estimate for bias to determine appropriate run lengths. Monte Carlo experiments indicate that this “bias-controlling” sequential-stopping method has the potential to work well in practice.

[1]  James R. Wilson,et al.  Linear combinations of overlapping variance estimators for simulations , 2005, Proceedings of the Winter Simulation Conference, 2005..

[2]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[3]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[4]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[5]  Averill M. Law,et al.  A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..

[6]  N. Blomqvist The covariance function of the M/G/1 queuing system , 1967 .

[7]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[8]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete-Event Simulations , 1975, Oper. Res..

[9]  Sungjoo Lee,et al.  Overcoming negativity problems for Cramer-von Mises variance estimators , 2008, Int. J. Simul. Process. Model..

[10]  Sheldon M. Ross,et al.  Introduction to Probability Models (4th ed.). , 1990 .

[11]  Averill Law,et al.  Simulation Modeling and Analysis (McGraw-Hill Series in Industrial Engineering and Management) , 2006 .

[12]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[13]  C. H. Sauer,et al.  Sequential stopping rules for the regenerative method of simulation , 1977 .

[14]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[15]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[16]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[17]  James R. Wilson,et al.  Exact expected values of variance estimators for simulation , 2007 .

[18]  D. Goldsman,et al.  ASAP2: an improved batch means procedure for simulation output analysis , 2002, Proceedings of the Winter Simulation Conference.

[19]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[20]  Joseph P. Romano,et al.  BIAS‐CORRECTED NONPARAMETRIC SPECTRAL ESTIMATION , 1995 .

[21]  J. S. Dagpunar,et al.  Principles of Discrete Event Simulation , 1980 .

[22]  Emily K. Lada,et al.  A wavelet-based spectral procedure for steady-state simulation analysis , 2006, Eur. J. Oper. Res..

[23]  António Carvalho Pedrosa Automatic batching in simulation output analysis , 1994 .

[24]  Emily K. Lada,et al.  ASAP3: a batch means procedure for steady-state simulation analysis , 2005, TOMC.

[25]  George S. Fishman,et al.  Estimating Sample Size in Computing Simulation Experiments , 1971 .

[26]  Keebom Kang,et al.  Combining Standardized Time Series Area and Cramér-von Mises Variance Estimators , 2007 .

[27]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[28]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[29]  Lee W. Schruben,et al.  Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .

[30]  Emily K. Lada,et al.  Skart: A skewness- and autoregression-adjusted batch-means procedure for simulation analysis , 2008, 2008 Winter Simulation Conference.

[31]  K. Berk A Central Limit Theorem for $m$-Dependent Random Variables with Unbounded $m$ , 1973 .

[32]  George S. Fishman,et al.  An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..

[33]  Seong-Hee Kim,et al.  An improved standardized time series Durbin-Watson variance estimator for steady-state simulation , 2009, Oper. Res. Lett..

[34]  D. V. Lindley,et al.  The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[36]  G. S. Fishman Grouping Observations in Digital Simulation , 1978 .

[37]  Ali Tafazzoli Yazdi Skart: A Skewness- and Autoregression-Adjusted Batch-Means Procedure for Simulation Analysis , 2009 .

[38]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[39]  Richard W. Conway,et al.  Some Tactical Problems in Digital Simulation , 1963 .