Fatigue life prediction of smooth and circular-hole specimens based on equivalent initial flaw size

Life prediction and failure analysis are necessary and critical for the aeronautical structures. In this paper, a general method is proposed to predict the fatigue life of smooth and circular-hole specimens using the equivalent initial flaw size (EIFS) concept. The proposed methodology is based on a previously developed method. Fatigue limit and threshold stress intensity factor are used to predict the life of smooth specimens. Quarter-circular corner crack is assumed to predict the life of circular-hole specimens. Model predictions are compared with experimental data and a good agreement is observed between model predictions and experimental data.

[1]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[2]  S. Pearson Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks , 1975 .

[3]  T. D. Gray,et al.  Quantification of fastener hole quality , 1977 .

[4]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[5]  J. Newman,et al.  Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies , 1983 .

[6]  A. P. Berens,et al.  USAF Damage Tolerant Design Handbook: Guidelines for the analysis and Design of Damage Tolerant Aircraft Structures. Revision A , 1984 .

[7]  B. N. Leis,et al.  Critical review of the fatigue growth of short cracks , 1986 .

[8]  E. R. Rios,et al.  The Behaviour of short fatigue cracks , 1986 .

[9]  R. Ritchie,et al.  Small fatigue cracks , 1986 .

[10]  Xu Hao,et al.  Investigation of cyclic hysteresis energy in fatigue failure process , 1989 .

[11]  B. R. Krasnowski,et al.  A Damage Tolerance Method for Helicopter Dynamic Components , 1991 .

[12]  J. Newman Fracture Mechanics Parameters for Small Fatigue Cracks , 1992 .

[13]  J. Newman,et al.  Fatigue-life prediction methodology using small-crack theory , 1999 .

[14]  Jaap Schijve,et al.  Fatigue of structures and materials , 2001 .

[15]  A. Wilkinson Modelling the effects of texture on the statistics of stage I fatigue crack growth , 2001 .

[16]  John A. Newman,et al.  A Novel Approach to Rotorcraft Damage Tolerance , 2002 .

[17]  A. P. Berens,et al.  Analysis and Support Initiative for Structural Technology (ASIST) Delivery Order 0016: USAF Damage Tolerant Design Handbook: Guidelines For the Analysis and Design of Damage Tolerant Aircraft Structures , 2002 .

[18]  Royce Forman,et al.  Fatigue Crack Growth Database for Damage Tolerance Analysis , 2005 .

[19]  Seong-Gu Hong,et al.  Application of local stress–strain approaches in the prediction of fatigue crack initiation life for cyclically non-stabilized and non-Masing steel , 2005 .

[20]  A. J. Green,et al.  Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy , 2006 .

[21]  K. Shiozawa,et al.  Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime , 2006 .

[22]  Andrew Makeev,et al.  A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models , 2007 .

[23]  A. Merati,et al.  Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys , 2007 .

[24]  Tianwen Zhao,et al.  Fatigue of 7075-T651 aluminum alloy , 2008 .

[25]  K. Al-Rubaie A general model for stress‐life fatigue prediction , 2008 .

[26]  Yongming Liu,et al.  Probabilistic fatigue life prediction using an equivalent initial flaw size distribution , 2009 .

[27]  Y. Xiang,et al.  Crack growth-based fatigue life prediction using an equivalent initial flaw model . Part I : Uniaxial loading , 2009 .

[28]  S. Stanzl-Tschegg,et al.  Near-threshold fatigue crack propagation and internal cracks in steel , 2010 .

[29]  J. Newman,et al.  Fatigue-Life Prediction Method Based on Small-Crack Theory in an Engine Material , 2012 .