Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty

In this technical note, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.

[1]  Mario Sznaier,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..

[2]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[3]  Eduardo F. Camacho,et al.  Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems , 2009, IEEE Transactions on Automatic Control.

[4]  Giuseppe Carlo Calafiore,et al.  A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs , 2007, Autom..

[5]  Abdullah Al Mamun,et al.  Probabilistic Robust Approach for Discrete Multi-Objective Control of Track-Following Servo Systems in Hard Disk Drives , 2012, ROCOND.

[6]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[7]  Roberto Tempo,et al.  On the Sample Complexity of Probabilistic Analysis and Design Methods , 2010 .

[8]  Minyue Fu,et al.  Worst-case properties of the uniform distribution and randomized algorithms for robustness analysis , 1998, Math. Control. Signals Syst..

[9]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[10]  Dimitri Peaucelle,et al.  R-RoMulOC: A unified tool for randomized and robust multiobjective control , 2015 .

[11]  Ian R. Petersen,et al.  Robust control of uncertain systems: Classical results and recent developments , 2014, Autom..

[12]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[13]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[14]  Giuseppe Carlo Calafiore,et al.  RACT: Randomized Algorithms Control Toolbox for MATLAB , 2008 .

[15]  Yasuaki Oishi,et al.  Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities , 2007, Autom..

[16]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[17]  Roberto Tempo,et al.  Randomized control design through probabilistic validation , 2012, 2012 American Control Conference (ACC).

[18]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[19]  Yasumasa Fujisaki,et al.  Sequential randomized algorithms for robust optimization , 2007, 2007 46th IEEE Conference on Decision and Control.

[20]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[21]  Roberto Tempo,et al.  Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms , 2013, Autom..

[22]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[23]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[24]  Qing-Guo Wang,et al.  Sequential randomized algorithms for sampled convex optimization , 2013, 2013 IEEE Conference on Computer Aided Control System Design (CACSD).

[25]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[26]  Fabrizio Dabbene,et al.  A Randomized Cutting Plane Method with Probabilistic Geometric Convergence , 2010, SIAM J. Optim..